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Abstract--Understanding the heat and mass transfer phenomena occurring during critical flow of 
two-phase mixtures is of primary importance in the safety analyses of pressurized water, boiling water 
and liquid-metal-cooled nuclear reactors. It has been shown that during a blowdown incident, the critical 
flow rate of the two-phase mixture may be affected by a variety of parameters such as the fluid stagnation 
conditions, the configuration of the blowdown vessel, the length and diameter of the exhaust duct, the 
purity of the liquid and the local and frictional pressure losses in the flow channel. The complexity of the 
thermodynamic phenomena taking place during the blowdown process resulted in many studies which 
compare a particular theory with selected sets of experimental data. However, in the absence of an 
adequate theory which is applicable over the entire range of the parameters encountered in the nuclear 
industry, there is a tendency to rely on semi-empirical correlation of the existing data. 

The main objective of this paper is to provide a general review of two-phase critical flow from the 
viewpoint of the needs of thermal-hydraulic systems codes and to conduct a systematic evaluation of the 
existing data and theoretical models in order to quantify the validity, under various conditions, of several 
of the more widely used critical flow models. Ten different critical flow models have been formulated and 
tested in this study against an extensive set of data from critical flow experiments with water as the test 
fluid. Results of the present study are expected to enhance the understanding of the predictive capabilities 
and limitations of the critical flow models currently used in the power industry. 
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1. I N T R O D U C T I O N  

The two-phase critical flow of one-component mixtures has been the subject of many analytical 
and experimental investigations, mainly because of its importance in the safety analyses of 
pressurized water, boiling water and liquid-metal-cooled nuclear reactors. The phenomenon is also 
pertinent to fossil-fuel fired power plants, steam-water boilers and railway transportation of 
saturated and subcooled liquids. 

Critical flow of singe-phase compressible fluids has been extensively studied and may be 
considered as well understood. However, a complete theory describing the critical flow of two-phase 
steam-water mixtures is not available. The main aspects of the problem are discussed in several 
review articles (Bour6 1977; Jones & Saha 1977; Ardron & Furness 1976; Wallis 1980; Isbin 1980; 
Giot 1981). A comprehensive review and discussion of the analytical models and key experimental 
results has been compiled by D'Auria & Vigni (1980) and by Abdollahian et al. (1980, 1982), with 
about 250 references cited. It is shown that the critical flow rate of a two-phase mixture flowing 
out of a pressurized vessel is affected by a variety of parameters such as the fluid stagnation 
conditions, the configuration of the blowdown vessel, the length and diameter of the exhaust duct, 
the purity of the liquid and the local and frictional pressure losses in the flow channel. The 
complexity of the thermodynamic phenomena taking place during the blowdown process resulted 
in many studies which show comparisons between a particular theory and selected sets of 
experimental data. Moreover, it became quite easy to select a comparison plot to justify the choice 
of a particular theory (Wallis 1980). The main objective of this paper is to conduct a systematic 
evaluation of a wide range of data and theoretical models in order to quantify the validity, under 
various conditions, of several of the more widely used critical flow models. As such, this paper 
should not be viewed as providing an in-depth analysis of the physics and mathematics of critical 
flow; its purpose is to provide a view of model validity for a very broad range of data. 

Ten different critical flow models have been formulated, programmed and tested in this study 
against an extensive set of data from critical flow experiments with water as the test fluid. Results 
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of the present study are expected to enhance the understanding of the predictive capabilities and 
limitations of the critical flow models used in the power industry. 

2. T H E O R E T I C A L  FOUNDATIONS 

In order to develop the basis for understanding critical flow, it is useful to first consider the flow 
of a single-phase vapor in a pipe of constant cross section. This approach is required because the 
usual verbal constructs used to explain critical flow can be somewhat misleading. Thus, the concept 
that critical flow is that flow which no longer depends on small changes in downstream conditions 
is correct for single-phase as well as for two-phase flow. However, while in single-phase flow the 
critical velocity equals the local isentropic sound velocity, the critical velocity in two-phase flow 
is far more complicated to predict, since the rapid expansion of the fluid may induce mechanical 
and thermal non-equilibrium between the two phases. 

This and the following section contain a simple discussion of some important features of 
single-phase and two-phase critical flow. Further discussion of the subject of single-phase critical 
flow may be found in many classical texts on gas dynamics (e.g. Lee & Sears 1964; Shapiro 1953; 
Oswatitsch 1956) where fairly detailed analysis of critical flow of gases is included (usually under 
the titles of sonic velocity and in the sections on flow in converging~liverging nozzles or supersonic 
diffusers). 

Consider the steady one-dimensional flow of a single-phase vapor, which for simplicity (but not 
necessarily accurately) is assumed to be at a constant temperature. In such a situation, only the 
momentum equation is of importance and can be written at steady state using a convenient 
notation: 

d(pV 2) dp p V  2 
+ dz  + pg + f 2 D -  = 0 [11 d~-~ 

where p is density, V velocity, p pressure, z and D are the axial coordinate along the flow channel 
and the channel diameter respectively, g is acceleration due to gravity and f is the D'Arcy friction 
factor. 

In steady state, the mass flux, p V - - G o ,  is spatially constant and [1] may be rewritten as: 

dr ~ G2o 
G2o + __ + Pg + f 2 ~  = 0 [2] 

where v is specific volume. 
If the temperature is constant, p = p(p )  only, and if this function and f a r e  specified along with 

the inlet conditions, then [2] may be solved for p(z)  and p(z).  It is not, however, necessary to do 
this in order to predict the conditions for critical flow. Instead, [2] can be reduced to the following: 

dp pg + fG2o/2pD 
- -  = [ 3 ]  

dz G:o dp 
_ _ _ _ _ _  

p2 dp 

And, as shall be seen later, this generalized form is the fundamental equation of importance for 
critical flow. The important thing is to understand what happens to the pressure as flow moves 
along the pipe: 

(1) because of friction and head loss (in upwards flow) the pressure drops;t 
(2) as the pressure decreases, the density decreases (dp/dp > 0); 
(3) because Go is constant, V increases. 

At some critical location d p / d z ~  - ~  when: 

G 2 dp 1 [4] 
p2(z) dp 

tThe pressure will always increase for adiabatic down flow in a constant area unless fG2/p > pg at z = 0. 



TWO-PHASE CRITICAL FLOW 93 

In a system with specified stagnation and sink pressures the mass flux is a consequence of the 
flow process and will adjust so that the critical value occurs at the exit of the pipet (after which 
no further frictional pressure drop can take place). Thus, the maximum flow rate that can be forced 
through a pipe of length L is limited by [4] being satisfied at z = L. One can always achieve this 
flow rate by using a larger pump, independently of the pressure beyond L. 

Although a "straw model" was established (single-phase vapor, constant temperature), the 
resulting equation is essentially correct for the two-phase mixture momentum equation which can 
be stated as: 

dzzdP I ~G--V] dG--V~T dTdz 1 +  -pj = - ( F  + [51 
i_ 

where GV = GG VG + GL VL, F is the wall friction and fi = pt(1 -- ¢) + pG¢ is the mixture density. 
In the expansion of d-G-V/dz in [5], it is assumed that G-V is a function of both temperature and 
pressure.:~ The continuity equation implies that, in steady state, the mass flux is constant. Hence, 

dG-V 2 d(1/p') 
dz = G° dz [6] 

where the correct definition for the momentum density, p',  as a function of the flow quality, x, 
is 

x 2 (1 - x) 2 
l ip '  = + - -  [7] 

EpG (1--E)pL 

Thus the condition for critical flow or maximum flow of the mixture is: 

8GV 
- 1 [8] 

2.1. Sonic Velocity 

The sonic velocity, a, is the velocity at which information (pressure disturbances) travels in a 
fluid.§ If an object in the fluid or a portion of the fluid attempts to travel more rapidly than this 
velocity, a shock wave will be established. In a single-phase fluid, this critical velocity is defined 
by [4] which can be written as: 

dp = a  2 
V2(L) = ~pp [91 

In single-phase flow, the momentum equation, which transmits information at both the fluid 
velocity (mass motion) and the sonic velocity can, therefore, not "see" ahead when the local flow 
velocity reaches a because information concerning the upstream geometry and conditions can itself 
only travel at the same velocity. At that velocity the flow is said to be choked. 

In equilibrium, two-phase flow the choking condition stated in [8] can be restated as:  

p2= dp 
dp' [101 

The term (dp/dp') has the same significance as the square of the sound-speed in [9], but it is not 
a t  all clear that it is the same sort of velocity. To demonstrate the difference between the two cases, 
consider, for example, flow of a two-phase mixture in a horizontal deep duct. If the duct is long, 
the flow will, in all likelihood, separate even at high velocities. In this situation there is an all-vapor 
region which is above a mixed phase region which is, in turn, above an all-liquid region. In each 
single-phase region, information can propagate at the single-phase sonic velocity but each is 
different from the other. It may be that for horizontal flows, the basic equations (assuming a 
one-dimensional continuous phase) are not valid and that two sets of equations must be established 
(one for the gas and one for the liquid phase) in order to analyze such a situation fully. 

tThat is, the behavior of the fluid will not permit G O to exceed some maximum value which depends on the geometry. 
:[:If it depends on both T G and T L then the temperature term is really a sum of two terms. If vaporization is accounted 

for, a quality term will appear on the right-hand side of the equation as well. 
§An object can travel faster than that but the fluid itself cannot transmit information within itself faster than this velocity. 
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A generalized criterion for choked two-phase flow can be obtained, in analogy with single-phase 
flow, by applying the theory of characteristics to a one-dimensional transient two-phase model. 
Thus, if the model is presented as a system of quasi-linear first-order partial differential equations 
of the form: 

A (U) ~S- + B(U) --G = + C(U)  = 0 [111 

where U is a vector of the primary dependent variables, then the velocity of signal propagation 
along the corresponding characteristic path in the space-time plane are defined as the real part of 
the roots, 2i (i ~< n, the number of differential equations comprising the model), of the characteristic 
equation 

det(A2 - B) = 0 [12] 

In a hyperbolic system of equation (obtained when the two-phase problem is "well-posed") all 
the roots of [12] are real. Choking will occur when the acoustic signal which propagates with the 
largest velocity relative to the fluid, is just stationary. In this condition no information can 
propagate into the solution region from the exterior. Thus, the choking criteria may be stated as: 

2i>~0 for all i~<n [13] 

If the constitutive relations for mass and momentum transfer at the interface are known, [12] 
and [13] can be readily solved to determine the propagation velocity in the two-phase mixture. 
Analytical expressions for the two-phase speed of sound were derived by Trapp & Ransom (1982) 
using a six-equation two-fluid model and by Kroeger (1978) and Kaizerman et al. (1983) using a 
four-equation drift flux model. In all cases, the predicted mixture sound-speed depends on the 
assumptions used to derive the constitutive relations and the flow pattern. 

To summarize the subject of two-phase critical flow it is of interest to quote the NEA 
state-of-the-art report (Brittain et al. 1982) where the following (still valid) paragraphs are found: 

"In adiabatic, frictionless, single-phase, compressible, steady flow through a De 
Laval nozzle the critical conditions arising in the minimum cross-section are 
well-understood and can be described analytically. Three equivalent statements are 
generally adopted to define criticality from a physical point of view: (a) upstream of 
the critical section the fluid state does not depend upon "small" changes of the 
thermodynamic variables existing downstream; (b) at the minimum critical cross- 
section there is at least one wave whose propagation velocity is zero with respect to 
the duct wall; and (c) (in the critical section) the flow velocity is equal to the local 
isentropic speed of sound. 

Only the first of the above definitions directly characterizes two-phase critical flow; 
the other two definitions require precautions when applied to two-phase flow. In fact, 
sonic speed is related to one phase and it is generally quite different in liquid and 
vapor; moreover, any perturbation wave induces variations in flow structure which 
may affect critical conditions. Neither of the last two points has been completely 
investigated." 

In the sections that follow, a fairly detailed set of analyses of various well-known critical flow 
models will be provided. In the analyses of nuclear reactor transients, these models are used in 
addition to the system model (whether three, four, five or six equations). Yet, as has been seen in 
[5], critical flow is a direct consequence of the use of the momentum equation. There is a general 
inconsistency in most system codes: either the ad hoc model predicts critical flow too quickly or 
too late compared to what is implied by the remainder of the model. 

3. N U M E R I C A L  CONSIDERATIONS 

The location of the critical plane in a choked flow is characterized by a so-called "pressure-knee" 
which describes the relatively sudden rapid negative increase in the pressure spatial derivative (cf. 
figure 1). This increase indicates that the critical flow location is near and is often used to assist 



TWO-PHASE CRITICAL FLOW 95 

r~ 
r~ 
,,v 

3.5 

3.0 

2.5 

2.0 

NODALIZATION 

+ 0.03m 

0.06m to 2.987m 
0.003m to END 

• 0.01m to 2.987m 
0.003m to 3m 
0.0003m to END 

O 0.06m to 2.987m 
0.003m to 3m 
0.0003m to 3.01m 

3 x 10-5m to END 

t~ 0.12m to 2.926m 
0.06m to 2.987m 
0.003m to 3.008m 
0.0003m to 3.010m 

3 x 10-4m to 3.011m 

3 x 10-6m to END 

I I I I I 
2.94 2.96 2.98 3.00 3.02 3.04 

L E N G T H  (m)  

Figure I. Effect of noclalization on the pressure spatial derivative near the choking plane. 

in locating the critical pressure. Mathematically the critical pressure is more correctly located where 
d p / d z  ~ -  oo. In fact, for flow in a constant area duct, the one-dimensional continuous phase 
equations cannot be continued across a critical flow location. The spatial derivatives have a 
significant impact on numerical solutions because they change markedly in the neighborhood of  
critical flow. In this section, some of the difficulties in resolving the pressure spatial distribution 
and locating the onset of  critical flow will be analyzed. The mathematical aspects of  the critical 
flow condition are further discussed by Bour6 et  al. (1975). 

When one is dealing with a steady one-dimensional flow of an ideal gas in a converging-diverging 
nozzle, the following equations can be established (assuming reversible adiabatic process) for the 
changes in Mach number, M, and pressure with changing area, in terms of  the initial value of  the 
Mach number (Lee & Sears 1964): 

d M  2 + (7 - 1 )M 2 d A  

= 2(1 - M 2) A [14a] 

d p  7 M  2 d A  

p - 1 - -  M 2 A [14b] 

where 7 is the ratio of  specific heats and A is the flow area. 
Because the Mach number reaches unity at the throat, the term d A / ( 1  - M : )  appears indetermi- 

nant but, in fact, is finite; otherwise there would be a j u m p  in the variables M and p across the 
minimum area if M reaches unity at the throat and this event does not happen. Simple analytical 
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solutions are possible to demonstrate the flow behavior in the nozzle. Assuming that the specific 
heat ratio 7 is constant, [14a] and [14b] may be integrated from point 1 to 2 to yield: 

A, M 2 1 2 + ( y - 1 ) M ~ ]  (:'+w(z(;'-)i 

A2 - M, E2 + (7 I)M~] [lSa] 

= [-2 + (7 - I)M ] >'/(;' ') 

P2 [2-+-(3 '  - I)M A 
[15b] 

Thus, t  in a converging nozzle, while M is a continuous function of A, dM/dA diverges as M ~ 1 
and [14a] cannot be used beyond M = 1 (the solution does continue in the complex plane). In the 
diverging section, however, the solution can be continued for values M > 1. Since A(z) is 
double-valued, [15a] has two solutions for A = const. However, it is observed that unless the sink 
pressure (the "back" pressure) is set at or below a specific value (the design pressure of the nozzle) 
the increase in M will limit itself with the formation of a shock wave followed by an increase in 
pressure and decrease of  M to values less than unity. 

When a fluid flows through a long duct, frictional effects at the wall and within the fluid become 
an important factor. In a pipe of constant cross section (adiabatic gas flow with friction), the 
fundamental equations of  steady one-dimensional flow are: 

dM 7M212 + (? - I)M 2] f 
M = 4(1 - -  M 2) D dz [16a] 

dp yM2[1 + (? - 1)M 2] f 
p 2(1 - M 2) D 

dz [16b] 

For  an ideal gas with constant ? it is convenient to integrate [16a] and [16b] between the limits 
M = M and M = 1, the corresponding limits on z being z = 0 and z = L*. Thus: 

f L *  1 - -  M 2 

D T M  2 

7 + I  [ ( 7 + I ) M 2  ] 
+ ~ In 2 +-~- -- I~-M2J [17a] 

p 1 [2 + (__v- 
p * - M  Y + 1 A [17b] 

These results cannot be continued beyond M = 1 by going to a larger length. Furthermore, 
although there are two solutions for [17a] with L* = const., if the flow reaches M = 1 at z = L* 
(the end of  the section) all spatial derivates of M and p diverge at L* 

Two results of  importance are found in both isentropic flow in a converging-diverging nozzle 
and in frictional flow in a constant area duct: 

• the spatial derivatives of  all variables have singularities at M = 1; 
• the variables are finite and non-zero at M = 1. 

Finally we consider the case of a steady flow in converging~liverging nozzle with friction, 
We again assume adiabatic one-dimensional flow for an ideal gas with an energy equation given 
by: 

I 2 H + ~V = Ho [18] 

t l f  y = 1 t he  s o l u t i o n  b e c o m e s :  
Al _ M2 e-(M~ M~),2 
A2 MI  

Pl = e (M~ - M~),2 
P2 
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where H is enthalpy in the flow channel and Ho is the stagnation enthalpy. It is not difficult to 
show that the solutions of  [18] are a combination of the previous solutions: 

dM 2+M2(7- l ) f7M2fdz  7 )  
- -~-= ~-(i~-M~ ) \ - ~  ~- [19a] 

dp_p l ~ M ~ 2 ( l + ( 7 2 1 ) M 2 f d Z D  d ~ )  [19b] 

While in the frictionless nozzle case the critical condition (M = 1) occurs at the throat (and the 
solution can be continued in the diverging section with M > 1) and in the constant cross-section 
case the critical condition must occur at the end of the channel, when friction is allowed in a 
convergent-divergent nozzle the critical condition can occur in the divergent section. At the critical 
plane ATf/2D = dA/dz. Since M would decrease after the throat if the nozzle were critical (with 
constant dA/dz) then this would require A(zt)TfM2(zt)/2D >dA/dz (Z t is the location of the 
throat). At the critical location (z* > zt) where M 2 = 1 both dM/M and dp/p are indeterminant, 
but if the above critical conditions hold then the first derivatives (at least) are continuous across 
M = 1. These results are of  significance in calculating the occurrences of  critical flow. 

A classification of  singularities is usually done in terms of the independent variable [e.g. f(z) may 
be singular at z*]. In the previous discussion we have noticed that the derivatives of  the dependent 
variables appear singular (or at least indeterminant) as a function of the dependent variable M. 
It may be mathematically improper to refer to the derivative of M with respect to z as having a 
"pole" at M = 1. But in fact, for these simple cases where explicit integrals can be found, 
expressions show that if M = 1 at z = z* then the classification of  the point z* (as regular, etc.) 
is the same as if we classified it from the viewpoint of  M. Thus if [16a] reaches M = 1 at z* then 
z* is a pole of order 1 which is exactly the conclusion to be drawn if we classified it in terms of  
M. In the following we refer, therefore, to M = 1 as a singular point. 

On a numerical grid, the downstream value is always a projection of  the upstream values (even 
if they are all calculated simultaneously by matrix inversion) and the value follows the underlying 
shape function that is implicit in the spatial difference operators applied to the first order 
derivatives, i.e. n th order difference operators can only reproduce finite polynomial behavior up 
to order n. Thus, first-order difference operators follow linear behavior exactly, second-order 
difference operators follow second order behavior, etc. But, as a singularity is reached in the 
numerical solution, no difference operator can be "accurate". Depending on the structure of the 
singularity, refinement of the mesh may not be capable of producing a converging solution in the 
neighborhood of this singularity. Of greater importance, the existence of a spatial singularity 
cannot, realistically speaking, be resolved on a discrete mesh; one can expect that the projected 
variable is not finite and non-zero at the critical flow point but is out of range. The numerical 
schemes continue blind calculation across the critical flow location and can drive the pressure 
negative (p, +j = p, + Az dp/dzl,). Even if the location is established or a logic scheme is on hand 
to save the calculation, the so-called throat pressure or pressure-knee value may not be clearly 
resolved. For example, in considering the flow of single phase steam through a pipe of constant 
cross section, a strong dependence is found between the pressure at the mesh point before the 
singularity occurs and the structure of the mesh sizes well upstream of the critical flow location. 
In a typical full non-equilibrium analysis using a constant flow rate (of. figure 1), the location of 
critical flow was found to be constant within _+ 20 mm, varying only as the spatial mesh size varies. 
In all cases, a critical flow occurs after z = 3 m and is less than 3.05 m. If a change is made to an 
equilibrium analysis, the location moves farther out, but the observations do not depend on which 
model is used. 

In figure 1, five nodalizations are shown, using a constant inlet flow rate and integrating the 
pressure derivative ([5]) up to the location dGV/dp = - 1. A logic cutoff is used to limit p > 0 as 
the deciding element and the various nodalizations are examined. The existence of a pressure-knee 
is clear; refining its value is difficult. Thus 30 mm nodalizations produce critical flow at 3.046 m; 
progressive refinements, down to 3 x 10 5 m, reduce the location to < 3.02 and make the knee more 
visible as somewhere between 3 and 3.15MPa, from 5.4MPa inlet pressure. However, such 
nodalizations, except conceivably for Az = 30 mm, are unrealistic because in a real simulation fine 
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Figure 2. Simulation of the geometry of the Sozzi & Sutherland (1975) nozzle 3 experiment. 

nodalization is required before each expansion, which is not economically feasible. In addition, it 
is not clear that the use of  a first- or second-order differencing of  the first spatial derivative is valid 
in the neighborhood of the singularity. Nevertheless, in the calculations to follow when spatially 
dependent models are used, increments consistent with the need to resolve the calculated critical 
flow rates to less than 1% (usually Az of  approx 3 ram) are used. 

3.1. Contraction Losses 

Critical flow occurs at an expansion, at least as far as the experiments are concerned. If a real 
jet is formed with avena  contracta, the minimum pressure occurs at that point. Whether the knee 
occurs at the expansion location or not is of  no interest at this time,t as long as the critical flow 
is found at the location of  the expansion, before the vena contracta (if any). Generally the knee 
also occurs before that condition because the structure of  the equations does not contain a model 
for analyzing the formation of a jet.$ 

The inlet to the pipe, crack, break, or other means of connecting a high pressure vessel to a low 
pressure environment involves a contraction. Figure 2 shows the simulation of  the geometry of the 
Sozzi & Sutherland (1975) nozzle 3 experiment. After a series of  calculations the geometry was 
reduced to the contraction and the nozzle (excluding the last two sections) without changing the 
results. The major question is accounting for the inlet pressure drop. It is clear from numerous 
studies that a jet should form at the contraction, and the vena contracta may be in the nozzle or 
in one of the larger sections. This question cannot be handled accurately within the available 
caiculational tools, and the total contraction pressure drop is taken in the first increment following 
the contraction. This approach will be followed independently of the increment size. 

4. C R I T I C A L  F L O W  M O D E L S  

T w o - p h a s e  c r i t i ca l  f low m o d e l s  a re  g e n e r a l l y  d i v i d e d  i n t o  t h r e e  ca t ego r i e s :  

• a n a l y t i c ;  

• f i t t ed  f u n c t i o n s ;  
• n u m e r i c a l  s o l u t i o n  o f  t he  c o n s e r v a t i o n  e q u a t i o n s .  

t i t  is very important to multidimensional calculations but not in the present context. 
:~The formation of a jet is fundamentally a three-dimensional problem. No major systems code contains a jet model. 
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Analytical models are based on straightforward extensions of the single-phase flow formulations. 
In these models the compressible density and enthalpy are essentially replaced by their two-phase 
mixture counterparts. Early models assumed thermal and mechanical equilibrium between the two 
phases (Henry & Fauske 1971). Analytical solution can also be derived when the requirement for 
mechanical equilibrium is relaxed (Moody 1965), and when friction is assumed at the wall (Moody 
1966). 

More recent works account for interface mass and momentum transfer by employing a two-fluid 
formulation of the flow (Ardron 1978; Richter 1981; Dobran 1987; Lee & Schrock 1988). Solutions 
of the pressure and temperature distributions along the flow channel are, typically, accomplished 
by a numerical integration of the model's equations. Departures from thermal and mechanical (slip) 
equilibrium upstream of the critical location can also be taken into consideration by using the drift 
flux formulation (Elias & Chambr6 1984; Chexal & Lellouche 1986). 

Considering use within systems codes, the conservation equations themselves, as long as a 
momentum equation is present, clearly contain the critical flow condition; but perhaps because fine 
nodalization was recognized to be needed,t that the equations being solved were inadequate for 
the purpose, or for other reasons, an adjunct critical flow model was added to accommodate the 
flow out of a break. These critical flow models then became exit boundary conditions to the 
calculation. However, most of these analytic models require significant computer time; therefore, 
algebraic fits to the solutions of some of these models were created to reduce number crunching 
time. These fitted equations then replaced the original models in some of the more generally used 
systems codes (RETRAN); TRAC and RELAP5/MOD2 use even simpler explicit models. As 
simulation models became more realistic, the use of the built-in capabilities of the systems code 
could be expected to replace these adjunct models. In fact, that does not appear to have happened, 
probably because the cost of fine nodalization in the break or nozzle is still large. 

In the following sections the capabilities and limitations of the existing two-phase critical flow 
models are discussed. The formulations that are presented are those used in the texts and original 
publications. Several of the more widely used models were programmed and extensively tested 
against existing experimental data. 

4.1. Analytical Models 

Analytical models of two-phase critical flow range from the homogeneous equilibrium model 
(HEM), which is essentially a single-phase flow model to methods that attempt to account for 
mechanical and thermal non-equilibrium phenomena. This section reviews the most widely used 
analytical models in roughly ascending order of complexity and evaluates their basic assumptions 
and limitations. 

4.1.1. The homogeneous equilibrium model 

This model, Henry & Fauske (1971) (subsequently referred to as HEM), is based on the 
assumption of isentropic, equilibrium flow. In such a case, the steady state:~ energy equation 
without heat input becomes, for flow between a still vessel and an ambient environment: 

V 2 
--~ + H(z)  = H o [20] 

which yields 
G = [2#t2(Ho - Ht)] '/2 [21] 

Here, G is constant (steady state), Ho refers to the enthalpy in the vessel§ and H t and #t are the 
enthalpy and density at the throat.¶ The throat conditions are determined by the following 
definitions, based on the assumption that the flow is isentropic: 

S O - -  S L 
xt :-- [22a] 

S L G  

t in  some codes fine nodalization solutions at abrupt area changes produce spurious choking. 
++All of  the analytic models are developed from the steady-state equations. 
§This is usually referred to as the "stagnation enthalpy". 
¢If  a converging~liverging nozzle is not in use, this refers to the vena contracta. 
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H ,  = H L + X, HLc [22b1 

1 
- -  = V t = V L "JI- X t ULG [22c] 

1 d~, _2~dVL_(Vm]dSL [dVLc,(VLG~dSLc]I [226] 
a~E -- dp = Pt ~ dp \SLc,/-~P + X L--~P \SLG] dp J)  

where s and So are the entropy and stagnation entropy respectively, aHE is the homogeneous 
equilibrium speed of sound, and all liquid and vapor properties are calculated at the throat pressure 
assuming saturation conditions. It is now desired to maximize G with respect to pressure 
(dG/dp = 0); this is accomplished most easily by numerical means yielding Pt and Go. 

4.1.2. Non-homogeneous equilibrium model 

This model, originally derived by Moody (1965), is an extension of the HEM model in that it 
permits different vapor and liquid velocities. A velocity ratio, S, defined as the ratio between the 
vapor and liquid velocities, is considered and treated as a variable which is determined by the 
conditions of maximum mass flux at the exit. Assuming that the phases exist at equal temperatures 
along the flow channel, [20] becomes 

xV~ (1 - x ) V ~  
H +--~-- + 2 - H °  [23] 

For a two-phase flow at thermal equilibrium the liquid and vapor velocities are: 

G(1 - x )  
V L - [24a] 

pL(1 --•) 

Gx 
V G - [24b] 

pG ~ 

If the flow is approximated by an isentropic process, [22b] and [23] through [24b] yield: 

G = (p ")t ~/2[Ho - H(pt, So)] [25] 

where the so-called energy density, p ' ,  is defined by 

, ix S,l_q[ 
p-,,,- Z +  - -  x +  P L  S 2  J 

[26] 

Considering equations [25] and [26] it is noted that for given stagnation conditions, the mass flux 
depends on both the local static pressure and the slip ratio, S. The choice of S is not unique but 
follows from the presumption that G should not only be maximized with respect to pressure but 
also with respect to the slip ratio.t Thus, the additional constrain 8G/SStp = 0 (with a negative 
second derivative) leads [25] to yield at maximum flow conditions 

(PL~ I/3 
S = [27t 

\Pc /  

Substituting [26] and [27] into [25], the critical mass flux can be solved again by searching 
for a pressure Pt which maximizes G. Note that [25], [26] reduce to the HEM relation [21] for 
S = l .  

The slip ratio described by [27] minimizes the specific kinetic energy of the two-phase mixture, 
A theoretical formulation for a slip ratio which minimizes the specific two-phase momentum was 
derived by Fauske (1962) who obtained 

s [281 
= \PG/ 

tThat is satisfactory, but there is no a priori reason why the underlying physics should require this result. In fact, it does 
not do so. 
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4.1.3. Isenthalpic model 

The approach is to solve all three conservation equations without recourse to considerations of 
entropy. A condition of isenthalpic expansion is assumed, which numerically appears to be 
reasonably well borne out when the equations are solved, and the following defining equations are 
considered: 

Constant flow rate 

GA = Wo [291 

Constant enthalpy 

Frictionless horizontal flowt 

1G 2 
H + ~ ~-~ = Ho [30] 

1 G 2 
p + ~--~- = Mo [311 

where W is mass flow, M' is total momentum and the subscript o refers to the inlet conditions. 
For homogeneous flow in thermal equilibrium, these equations can be readily solved for the 

throat quality:l: as: 
Ho - HG -- (M~, -- pt)VG 

xt = 1 -t [32] 
HLO + (M'o -pt)VLo 

The procedure for solving [29] through [32] for the critical flow is the same as for [21] and [24a]. 
First, a throat pressure, Pt, is selected (given Ho, Mo etc.) and G2/ft is calculated from [31], then 
[32] is used to define xt and [22c] to define Pit and then G; different values ofpt  are searched until 
a maximum G is found. Note that Ht and G2/ft were algebraically eliminated between [30] and [31] 
to yield [32]. 

To use the isenthalpic model for the more general case with slip one needs to substitute ti in 
[30] and [31] by p" from [26]. This yields a quadratic equation for the throat quality as 
follows: 

1-xqs x,+!-x,l= 
XtHLG + (MZo--Pt ) 

PL /LSxt+ 1 --xt] Ho-HL [33] 

For homogeneous flows (S = 1) the isenthalpic model becomes identical to the HEM model, 
while for S = (pL/pG) ~/3 it becomes identical to the non-homogeneous equilibrium model. 

4.1.4. Homogeneous non-equilibrium model 

The analytical models just discussed, have been based on a thermodynamic derivation which does 
not use the two-phase speed of sound of Mach number as a critical condition. Consequently, when 
using, for instance, the assumption of homogeneous equilibrium flow, the predicted throat Mach 
number (M = Gc/axEft) may be greater than unity. This is true mainly for subcooled stagnation 
conditions and is a direct result of the discontinuous change in the homogeneous equilibrium speed 
of sound (cf. [22d]) at the transition from single- to two-phase flow. For saturated or two-phase 
stagnation conditions, the HEM yields M = 1 at the critical plane. 

As stated in [12] and [13], the critical conditions can be derived by a mechanical approach directly 
from the conservation equations of two-phase flow. In this approach, however, the critical mass 
flux is not necessarily at its maximum value. A model which combines both the thermodynamic 
and the mechanical approaches was developed by Dickman et al. (1990). The model employs the 
isenthalpic equations, [29]-[31], assuming that the flow is homogeneous and that at the choking 
plane the liquid phase becomes metastable (superheated). The vapor phase is assumed to be at 
equilibrium with respect to the throat pressure. 

tlf G in the vessel is very small, then M~, ~Po. 
++Remember that in homogeneous equilibrium flow t7 -= v L + XVLG. 
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For a homogeneous non-equilibrium flow [29]-[31] yieldt 

Ho - HL -- (Po -- pt)VL 
X, = HLO + (Po --Pt)VLo [34] 

Equations [29]-[31] and [34] are solved simultaneously, using a double iterative procedure, for 
Gc and for the liquid degree of superheat. In this method a throat pressure, Pt, and a liquid 
superheat, A T = TL -- Ts, are searched for such that the criteria of G = maximum and M = 1 are 
met simultaneously at the throat. A homogeneous non-equilibrium speed of sound is defined as: 

a2NE dp =dpp VL+XtVLo [35] 

The calculated degree of liquid superheat is shown to depend on the stagnation conditions. For 
subcooled conditions, the model predicts a non-zero degree of liquid superheat at the throat. 
However, since in this case, the throat quality is generally small, the flow could be approximated 
as an isentropic process. For saturated or two-phase stagnation conditions the predicted liquid 
superheat is vanishingly small and the model becomes equivalent to the HEM. This model has not 
been included in our comparative study. 

4.1.5. Moody fL /D model 

In long pipes, the effect of wall friction may become important in determining critical flow. This 
section is, therefore, included to show how friction effects can be included in critical two-phase flow 
calculations although it is not used in our comparative studies. A critical flow model with slip was 
developed by Moody (1966) to account for frictional effects in terms of a parameter ~CL/D where 
f is an average friction factor and LID is the length-to-effective-diameter ratio. 

Referring back to [3] or [5], we note that the frictional effects appear in the numerator and the 
critical condition refers to the denominator where O-G-V/Op = -  1. As one moves toward 
single-phase conditions, the critical condition depends on local pressure. Therefore, friction, by 
reducing pressure, will cause the pressure to reach the critical value earlier in space than if i t  were 
not taken into account. Note, however, that the values of the critical pressure and critical flow are 
not affected if friction is included in the analysis. One further important aspect of accounting for 
friction losses is that it is one way of taking into consideration the inlet contraction loss and 
accommodating subcooling. That is, the vessel pressure undergoes a sharp decrease on entering the 
pipe (crack, break, etc.) and this decrease--as shall be seen later--is usually the dominant cause 
for early vapor formation because it usually overrides any subcooling of the vessel liquid [i.e. after 
entering the crack (break, pipe, etc.) from the vessel, the liquid will be superheated]. In the usual 
LOCA scenario (double-ended discharging to the atmosphere), this effect may not be important; 
there is no contraction effect except, perhaps, well upstream. 

This model is established for a pipe of constant flow area with no contraction and for steady-state 
so-called isenthalpic conditions. The basic equations are: 

Mass 
G = Go [36] 

Momentum 
G2d(I/P')( dp ) 

dz = -  dz  +zw [37] 

Energy 

Ho = HL + XHLG + ~ [381 

In [37] and [38], p '  and p" are the momentum and energy densities defined in [7] and [26], 
respectively. Subcooling can be taken into consideration by determination of the subcooling 
pressure decrement--the pressure at which liquid of a given temperature would be saturated. 
Equation [37] is solved for the length needed to reach this pressure after which vaporization starts. 

t F o r  subcooled stagnation condit ions the vapor  quality at the throat  is small and [34] could be approximated by its 
isentropic counterpar t  x, = (s o --SL)/SL~. 
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To complete the model, % is defined as: 

% - dp~ofG2/2pL D [39] 

with the two-phase multiplier given by: 

(1- xy 
q~ ~o - \ 1 - E ] [40] 

Solving [36] through [40] for the critical flow rate calls for an explicit numerical integration. This 
model is, therefore, the first to be considered, which does not lead to an algebraic, albeit 
transcendental, equation but only to recursive quadratures. Effectively, one integrates spatially 
many times until a maximum is found numerically. 

The usual approach at this point is to define a series of special functions made up of partial 
derivatives of the various quantities (Moody 1966) and then write a single integral of [37]. Thus 
the momentum equation is expanded to yield: 

dP[_l+G2aV' ] G2aV" dx 
d--z L c~p xJ + ax p dz = -- % [41] 

where v' - 1/p'. 
The next step is to note that Ho is a function of (x,p) and is assumed to be constant, thus: 

from which: 

and [41] becomes: { 

aHo +ano, 
dx . dx c~p dp = 0 [42] 

~Ho 
dx _ ap x dp 
dz aHo dz 

c3x p 

, , O,,oil 
Ov I 2Or [ dp I x / d  p G i l + G2-@p x -  ~x p d~ol ~-~z 

 xl, J 

2pL F(p , G) dp f 
GZ[I+(\SpGPL _ I ) x ]  2= - ~ d z  

or using [39]: 

G2 a(v")~ t 2 -~p ,, av' _ 

G~a(v') ~. @ .~ 

2 ~x p 

The function F is given by: 

f C~Ho + 

F(p,G)_ 2Jav'l aP Ix' 
l Oxl, a-o + 

L axl, 

[43] 

I f f  is the average value o f f  over the length L then: 

fp - L  
P' 2pLF(p, G) dp = - f  

2 G211 +(\SpGPL- l )x]  2 

= -- z, [44] 

[45] 

1 [46] 

[471 

is the quadrature of interest. The optimization method is to choose Pt, find G from [47] and repeat 
with different values of Pt until G is at a maximum. It may be simpler to pick a value for G and 
solve for Pt because G: appears under the integral. Then either one or two values for Pt will be 
associated with each value of G2; G 2 is varied until the two values of Pt are sufficiently close to 
presume dG /dpt .~ O. 
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The upper limit, p~, on the integral is the value of the pressure after the contraction. An estimate 
of the pressure drop Po-P~ may be introduced into the calculation by assuming an isentropic 
entrance condition 

S(po,/4o) = SL(P l  ) --~ X I S L G ( P  1 ) [ 4 8 ]  

Equation [48] can be applied to obtain the pressure pj. Note that p~ is itself a function of G, 
which makes the "pick G and solve for Pt" method somewhat more direct. In this case, x~ (if any) 
is calculated from [38]. Originally the slip relation defined by [27] was applied in this model. 

4.1.6. The Burnell model 

Burnell (1947) makes use of an empirical correlation for the critical pressure. The liquid 
temperature and density at the exit were assumed to be equal to the stagnation (vessel) values. The 
Bernoulli equation, between the vessel and the critical location, was applied to calculate the mass 
flux. The critical pressure was estimated using an empirical equation. Thus, 

Gc = [2po (po - Pt )]'/2 [49a] 

Pt = Ps(To)[1 - 0.264a(To)/49-2] [49b] 

where a is surface tension. 
This model should have its greatest application for L/D < 1. 

4.1.7. The extended Henry-Fauske model 

The extended Henry-Fauske (H-F)  model (Henry & Fauske 1971) is complex to use but quite 
simple in conception. The derivative is fairly involved but can be simplified by noting that since 
it is a solution solely of the momentum equation in the absence of  friction and head effects, we 
could start with the simplified form of [5]: 

d~--~ 
d p +  = 0 [501 
dz --~z 

from which the critical flow condition is aGV/Op -- - 1 (cf. [8]). 
Equation [50] is now integrable leading to 

G V  + p  = GV(O) + (p(0)  - Ap,R) [51] 

where Ap~ R is the irreversible pressure drop caused by area change (contraction or expansion) at 
the inlet to the flow channel. If the integration is carried out from the stagnation point to the throat, 
[51] can be rearranged as: 

G~ = p(0) - P t -  ApIR [52a] 
f(xt ,  Pt) - f (Xo,  Po) 

where 
xS + (1 - x) 

f (x ,  p) = [(1 - x)SVL + XVG] [52b] 
S 

Equation [52a] can be restated in a differential form as 

1 _ df(x, p) [5 3] 
, 

If one could evaluate the derivatives involved, one should be able to close and solve these 
equations. It is here that the basic structure of the Henry-Fauske model is established. The 
derivative introduces four terms: dx/dp, dpG/dp, dp L/dp and dS/dp. These are readily obtained by 
introducing the following assumptions: 

(1) the amount  of  mass transferred in the expansion is negligible, xt ~ Xo; 
(2) the liquid temperature is constant throughout the process, TL~ = TLo; 
(3) the phase velocities are equal, S = 1; 
(4) the system entropy during the expansion can be assumed constant, dso = 0; 
(5) the liquid at the throat is incompressible, dvL/d p [I = 0; 
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(6) the vapor can be described by a polytropic process such that dvo/dp l, = volnpl,, where 
n is a thermal equilibrium polytropic exponent; 

(7) the velocity ratio at the throat reaches a minimum, dS/dp I, = O. 
Furthermore, it is noticed that at the throat, the local heat and mass transfer rates are large. 

The rate of  mass transfer at the throat was correlated by 

I(1 dSL dSG] 
d.~p = _ -Xo)-~p+Xo-@p =NdX E 

SGo - -  SLo dp , 
[54] 

t 
where N is a non-equilibrium parameter defined by fitting to expenmental data and the equilibrium 
quality, XE is given by 

S o - -  S L 
X E - - - -  

so -- SL 

where sc and SL are the vapor and liquid saturation entropies and So is the inlet stagnation mixture 
entropy. Note that xo is not a flow quality but equals Epo/~; this will fit well with the final 
assumption that S = 1 and avoids the contradictions that would arise if S ~ 1: 

The above approximations for xt, dx/dpl, and dS/dpl, simplify the critical flow rate expression 
to 

[ Xo ( l  1 ~(1--Xo)NdSLE xoCpG(1/n--1/~,~]-' [55] 

Tp P( oo--SLo) J_l, 

Equation [55] requires the throat pressure for calculating Go. The throat conditions can be 
calculated by coupling [55] with the momentum equation along the flow path. Starting with the 
simplified form of [5], Henry & Fauske reduce it under all the assumptions above to 

d(V2/2) = - [ (1  - Xo)VLo + XoVG(p) ]dp [56] 

Considering the isentropic expansion process previously introduced, 

Po (Voo)~ = Pt (vot)~ 

Equation [56] can be integrated between the stagnation and throat locations to yield (noting that 
Vo = 0 ) ?  

{ 1 - X o  Xo~2G~ 1 - X o  x o  (Po  P t )  
+ = (Po --Pt) + r 1 [57] po,  T PLo - 

Equations [55] and [57] can be solved for Gc and the throat pressure. Eliminating Gc between 
[55] and [57] yields a transcendental expression for the throat pressure. Note, however, that the 
full momentum equation leads to [52a] which under the H - F  assumptions yields the exact and much 
simpler result 

G~ - Po - Pt - ApIR 
Xo (v~, - Voo) 

This formulation would require Apl R to be evaluated., The boundary condition used is V o = 0 
(AplR > 0). 

The H - F  model in its final form solves [55] and [57]. This formulation requires the solution of  
a non-linear equation for the throat pressure (i.e. where dp/dz--+oo); and as such there is some 
difficulty with experimental comparisons and the numerical solution technique is more complex 
than is desirable for a systems code boundary condition. As a result the De Young (1975) curve 
fit to this model tends to be used more than the original model is (see ahead to section 4.2.2). 

4.2. Fitted Models (The RETRAN Procedures) 
The analytic models discussed above (except Burnell's) end with implicit algebraic or numerical 

forms. The solution for the critical mass flow rate thus involves time-consuming calculations. One 

fPresumably this is done to avoid the need to consider APtR effects. 
:[:Presumably [57], the H-F result, is independent of area change effects. 
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way out of  such a situation is to "fit" the solution to a simpler form which yields the critical flow 
directly in the form: 

G~ = f ~ (Pl , Ho,~fL /D ) 
or using the area ratio a '  

Gc =f2 (Po, Ho,fL/D, a') 

One can then compare the local mass flow rate with Gc and determine if critical flow has been 
reached,l" after which no further increase in flow is permitted through that location. Clearly. this 
is a more efficient way to use the models. However, the major problem lies in the adequacy of the 
fit. Thus, in developing fitted equations such as the above, the original model is used to produce 
"data"  which are then fitted by a least squares or other process to yield a polynomial 
approximation. This final result must statistically be considered a totally separate model and 
compared independently with data. If for example, # is the mean error between the model and 
experimental data and a the standard deviation while 0 is the mean error between the model and 
the fit to the model, then the mean error between the fit and the experimental data is # + 0. The 
standard deviation between experiment and fit cannot be expressed directly unless further 
assumptions are made concerning randomness. The result is that such a fit may be better or worse 
than the original model when it is compared to data. The fitted models we examined are those used 
in RETR AN (McFadden et al. 1984). 

4.2. I. Moody fit 
Consider a fit to the Moody model discussed in section 4.1.2. The functional form for this fit 

is an expansion in pressure and enthalpy. 

exp M"a#H' 15 < p  < 200 psia 
GM°°dY(p, H)  = j i [58] 

L o o j., 200 < ,  < 3000 psia 
j i 

The constant coefficients, M , j  and M2~j, in these expressions are listed in table 1. The domains 
of validity in the p-H plane are depicted in figure 3. This fit is meant to be used only inside the 
saturation envelope, i.e. saturated or two-phase inlet conditions. 

4.2.2. Extended Henry-Fauske fit 
The original model developed by Henry & Fauske (1971) attempts to determine the critical flow 

in a converging (De Laval) nozzle, neglecting wall friction. By making use of an extensive set of 
assumptions, the authors developed a final result which is extremely complicated to use directly. 
A discharge coefficient is used when applying this model for orifices or tubes. 

Within the structure of RETRAN (McFadden et al. 1984), this model is used only for subcooled 
inlet conditions in the regions shown in figure 3. The fitted form is given by: 

J NI,.jp H 15 < p < 300 psia 
GEnF(p, H) = J ' [59] 

L ~o ~oN2,,jpJH , 3 0 0 < p < 3 0 0 0 p s i a  

The constant coefficients, NI~.j and N2ia, in these expressions are listed in table 2. 

4.2.3. Isenthalpic model fit 
Although the isenthalpic model was developed without regard to considerations of entropy in 

section 3, a somewhat different result can be established by assuming that entropy is constant. Thus 

tRemember that this method is the way the system's codes actually use such models. 
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Figure 3. The domains of validity in the p-H plane of the fits to Moody and the extended Henry-Fauske 
models ([58],[59]). 

1/p =-x/pc + (1 - X ) / R L  was assumed, a condition which follows from V-  G/p when the slip, 
S = 1. Under  the assumption of a constant entropy expansion, use could have been made of  the 
thermodynamic condition dh/dp]s -= 1/~ and a different critical flow condition would have been 
found. 

In the R E T R A N  manual  (McFadden et al. 1984), this model is referred to as a fit to the 
isenthalpic model. In fact, if the constant entropy condition is applied, as it is in RETRAN,  this 
model is the same as the H E M  model. It  continues to be referred to as a fit to the isenthalpic model 
because that is how the literature refers to it. 

De Young (1975) solved this model for a wide range of inlet conditions, which were used to 
prepare the following fitting equations: 

Low pressure range (14.7 < p  < 100 psia): 

f =~=o =~=o Ili'jp'~H~ 
G~S°(p,H)= ' ' 

,.:p H2 
j i 

subcooled 8 ~< H ~< H~ 

2-phase Hs~<H-%<1750 

[601 

where Hs is the saturated liquid enthalpy, p] = 750p °5, 
/-/2 = 5900 exp( -0 .0013733H)  in British units. 

In the mid-pressure range (100 < p  < 2800 psia): 

HI = 5 5 0 0 -  2.3 x 10 -t° x H 6 and 

i, jP3H3 
= " =  

GlcS°(p, H)  = J ' 

[~--0~=0 i 

subcooled 8 ~< H -%< Hs 

2-phase Hs ~< H <~ 1750 

[611 

where P3 = 58.863p °'75, H3 = 20000 - 0.05389H 2 and H4 = 50000 exp(-0 .0013733H).  
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In the high pressure range (2800 < p < 6000 psia): 

/~o~__oIsi.jpJn~ subcooled 250~<H~<800 
GlcS°(p, H)  = 2- ,- [62] 

L~o~=olri.jp26Hi62 , 2-phase 800~<H~<1750 

where P6 = 22000 + 7.36842p, H5 = 5900 exp(-0.0013733H) and H 6 = 50000 - 0.06173H 2. 
The constant coefficients, Iti.2, in the expressions [60] through [62] are listed in table 3(a)-(c). The 

domains of  validity in the p-H plane are depicted in figure 4. 
In use, these models may be mixed (Moody to isenthalpic, etc.). In such a situation, a transition 

region must be introduced to eliminate jump discontinuities at region boundaries. The specific 
details of  how this is accomplished in RETRAN are found in McFadden et al. (1984). 

4.3. Numerical Solutions 
The value of  an analytical solution lies in the insight gained about general variations of  

parameters. Yet, there must be some general validity to the underlying theory that is used if the 
results are not to be merely exercises in analysis. The plethora of  models now extant results from 
the requirement to produce full-range-capable solution methods before significant experimental 
data were available to validate the models in any statistical sense. Yet, in examining the models, 
one can conclude that the results of  disparate assumptions (e.g. i so--or  non-iso--whatever) without 
significant relevant data comparison are simply exercises. 

The underlying phenomena which apparently control critical flow in two-phase, one-component 
flow appear to be: 

• contraction pressure loss (leading to superheating of  the liquid); 
• flashing of  superheated liquid (leading to vapor mass flow); 
• the relation between void fraction and flow quality; 
• pressure drop due to increasingly positive momentum flux (and, in many, cases significant wall 

friction). 
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Figure 4. The domains of validity in the p-H plane of the fits to the isenthalpic model ([60],[61]). 
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TWO-PHASE CRITICAL FLOW 1 | | 

These phenomena require three constitutive relations (or four if wall friction is accounted for): 

• contraction loss model; 
• flashing model; 
• void/quality model; 
• wall friction model. 

The question whether the flow is isentropic, isenthalpic, isoenergetic or other can be determined 
(within reason) by detailed numerical calculations. Detailed fine mesh calculations with six equation 
models are required to make use of this path. One would start with a model that has already been 
shown to be statistically valid in both diabatic and adiabatic flow where the additional, if any, 
requirements needed to extend the constitutive relations into the very high velocity critical flow 
regime would be examined. 

Consider three models which have some of the characteristics that have just been presented: 

• Richter's model (Richter 1981); 
• Elias-Chambr6 model (Elias & Chambr6 1984); 
• a general drift flux model. 

These models contain most of the above features and may be presumed to be capable of 
reasonable prediction of data if: 

• the constitutive relations have a basis in fact; 
• the assumption that a one dimensional continuous phase model is inherently not wrong for 

predicting critical flow. 

As shall be seen, these models produce reasonable results but not necessarily statistically good 
results. 

4.3. I. The Richter model 

Richter (1981) developed a mechanistic non-equilibrium two-fluid model which uses two mass 
conservation, two momentum conservation and one mixture energy conservation equations. A 
simple flow regime map is adopted which consists of bubbly flow for void fractions of less than 
0.3, annular flow for void fractions larger than 0.8 and a transition regime (called churn turbulent 
flow) for void fractions between 0.3 and 0.8. The governing equations are: 

1 dW L 

W L dz 

1 dWc 

Wc dz 

dVL 
pL VL(1 - - E ) A  = - - -  

dz 

dVc = _ _ _  
Po VoEA dz 

1 dpL 1 d VL 1 dE 1 dA 
. . . .  + -+ [63] 

PL dz VL dz 1 - e d z  A d z  

1 dpc 1 d V c 1 dE 1 dA 
+VG dz + -  + - - - -  [64] Edz a d z  dz Pc 

dp 
(1 --E)A +ZcLA --ZwLA -- ½(VG-- VL) d~z L [65] 

dz 

~zz EA -- zoL A -- , . o A  -- ½ (Vo -- VL) d~---~ ° [66] 

[67] 
+(dMo dVo  ldHL vLdVL  

[(H~ - HL) + ½(V~ -- V~)] \ dz + VG dz ,] WG + \ dz + dz ] WL = 0 

6h ( T L -  TG)EA dWG dHc ~- = ~ HLO + Wo ~ [68] 

where ~CL is the interfacial friction force, ~wL and vwc are the wall friction forces on the liquid and 
vapor phases, respectively; d is the bubble diameter and h is the heat transfer coefficient. The last 
term in the momentum equations [65] and [66], represents the momentum changes due to 
evaporation or condensation. The right-hand side of [68] represents the evaporation and change 
of phase of the bubbles. Dobran (1987), has improved on the above model by replacing the second 
term on the right-hand side of [68] by the expression W ( V  2 - V ~ ) d x / d z  which accounts for the 
change in kinetic energy during evaporation. 
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The dependent variables in Richter model are: p, Vc, VL, WG, HL and E (or d). Generally 
speaking, the model is specialized with respect to its constitutive relations as follows: 

(1) The interfacial friction contains a spatial derivative term in the bubbly flow regime of the 
form 

1 d ( V ~ -  VL) 
-bubbly 3CDe(I--E)3pL(VG - VL)IVc-- VLt+~pLVce clz [69] 'OL 

where CD is given by Co = C~(1 - /~)4 .7  ( C D  is the drag coefficient for solid sphere). In the 
annular flow region (E > 0.8), the interface friction force defined as 

annular 1 
ZGL ~ -  = ~ C f i A i A P G ( V  G - -  VL) 2 [70] 

where C~ is evaluated from Ca = 0.00511 + 75(I -E)]  and the interfacial area, is A~A = 
4x//E/d. 

(2) Interfacial heat transfer requires a surface area and a heat transfer coefficient. In the 
bubbly flow regime 

AiB = N~d 2 

ki pr0.33) h = -~ (2 + 0.6 Re °'5 

where h is the heat transfer coefficient and Re and Pr are Reynolds and Prandtl numbers, 
respectively. 
In the churn-turbulent regime h is determined from a Colburn type equation 

C~ 

(3) The wall friction for the vapor phase, ~wG, is neglected, and the Martinelli-Nelson 
two-phase multiplier is used to calculate the wall friction on the liquid phase. 

(4) In the churn-turbulent flow regime (0.3 < E < 0.8), the interfacial friction is calculated by 
a linear interpolation with respect to the void fraction of the friction factors at E = 0.3 and 
at E = 0.8. 

The number density of bubbles, N is chosen as 10 ~ m -3 and the initial bubble diameter, d, at 
the start of homogeneous nucleation is taken as 2.5 x 10 5 m. The relation between diameter and 
void fraction is taken as: 

E = Nzcd3/6 

According to [68] the vapor generation term may be taken as 

I ~6h TG)--GGA (dHG'~ ~z ] [71] 
/~O=H-~LGL 7 e A ( T L -  \ d p  /, 

There are a number of difficulties with this definition in a vertical pipe. If we take the origin of 
our reference frame as the start of the discharge pipe (increasing distance is downwards), then dp/dz 
is positive over much of the early length. Since (dHc/dp)s < 0 for p > 500 psia we note that it is 
possible for/~a to be positive and for voids to form while the liquid is subcooled (and in the absence 
of a wall heat flux). Indeed, in this model, high depressurization rates can suppress void formation 
for p > 500 and high pressurization rates can enhance void formation. The opposite is true for 
p < 500 which is what one would expect to be correct independently of pressure. 

In practice the Richter suppresses nucleation until the liquid achieves a certain bulk superheat 
implied by Ap > 4a/do with do ,-~ 2.5 x 10 -5 m. 

This model along with Ardron's (Ardron 1978)t introduces a spatial derivative in the interface 
friction term. This term is assumed to arise from the apparent mass force. Although such a force 
does exist, its importance in these calculations is not clear because comparisons (the same 
calculation with and without the term) were not performed by the authors. 

tNot considered here. 
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4.3.2. The Elias-Chambrk model 
The Richter model makes use of the phasic momentum equations and introduces a specific form 

for ~CL- The model we discuss now (Elias & Chambr6 1984) introduces the drift flux relation and 
only makes use of a mixture momentum equation. 

Adding the momentum equations of the two phases one obtains in steady state 

d( Vc GG + VLGL) dp 
dz + dzz + ~g + ZwL + Z~ = 0 [72a] 

If the drift flux equation is explicitly introduced then this is replaced by: 

[EpLpG(V~)21 dp 
d---~kP) + ~ z z d  {G2"~ d " O---E--~ + d z  +Pg+ZwL+ZwO=0 [72b1 

where 
# -= (1 - QPL + Epc 

, _ ~ v ~  + (Co - 1 ) c  

v ~  = (1 - O ( v o  - VL)  - -  p _ (Co  - 1 ) ( p L  - -  pO)E  

Co is a concentration parameter which quantifies the effect of the radial distribution of the void 
and Vgj is the void weighted vapor drift velocity with respect to the center of the volume of the 
two-phase mixture. In this particular study it was assumed that Co = 1.13 and 

V~ = 1.41 ag( Pc cos 0 [73] 
L P L  _J 

where the inclination angle, 0, is measured from the vertical axes. 
As in the Richter model a special set of assumptions is introduced concerning: friction factors, 

heat transfer coefficients, state equations, etc. The most important of these assumptions is the 
treatment of the vapor generation term. 

Consider the growth in the superheated liquid of vapor bubbles of radius r to determine the 
evaporation rate term /~G. The determination of r requires the simultaneous solution of the 
equations for the vapor pressure in the bubble, the time-dependent thermal conduction in the liquid 
layer surrounding the bubble and the dynamics of the bubble. A number of approximate solutions 
available in the literature greatly simplify the analysis. As the bubble population is averaged over 
the flow cross section in the following, the influence of the wall on the bubble radius history is 
ignored. In addition, convection heat transfer is insignificant for small bubble sizes and low relative 
velocity. The bubble radius is, therefore, determined by a conduction bubble growth model (Forster 
& Zuber 1954): 

r = 2k HLGpG (TL -- T')x/~' k = ~/~ [74] 

TL is the temperature of the liquid surrounding the bubble, Ts is the vapor temperature taken 
to be at saturation and 2 and Cp are the liquid conductivity and specific heat at constant pressure, 
respectively. In a steady temperature and pressure field [74] can be restated as: 

dr = f12 (TL - -  T,) 2 fl = k (N /~P)L  [75] 
dt r ' H L G P G  

The principal assumption is now made that the rate law in [75] is valid also in an element of 
the vapor phase which travels with the speed of the vapor. Equation (75) can be stated in the 
Lagrangian view as 

Dr = f12 (TL - -  Ts) 2 [76] 
Dt r 

where Dr/Dt denotes a substantial derivative. A new formulation is incorporated in order to arrive 
at the bubble species equation which yields the bubble number and their radii distribution n(z, r) 
along the flow path. The vapor generation term was obtained by integrating the rate of change 
of n over the range of existing bubble radii in the flow. In this way the model accounts for the 
variation in both the number density and sizes of the bubbles along the channel. 
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The model postulates the existence of  two separate families of  bubbles: those introduced at the 
inlet and those generated along the flow path. In the end, the model has three parameterst  which 
define the relative importance of  the two families. The first, n~, is the normalized bubble density 
of the first family; the second, no, that of the second family; and the third, ~,, is a heterogeneity 
coefficient which defines the rate of formation of new bubbles along the flow path. These 
parameters were adjusted to yield good agreement with data. The following values were used in 
this study:~ 

{~ × 1030 saturated and superheated vessel conditions 
n~ = subcooled vessel conditions 

n 2 = 1028 

~k = 10 -8 

4.3.3. A general drift f lux model 

This model, as that of  Elias & Chambr6 (1984), uses a drift flux model in place of  the second 
momentum equation. The specific drift flux parameters are those developed in Chexal & Lellouche 
(1986), except that the directional component of  gravity multiplies Vgj (as in [73]). Thus, for 
horizontal flows: 

VG =- Coj =- CoJL /(1 -- ECo ) [77] 

and the vapor generation term for superheated liquid with no wall heat flux is: 

/~G = 4h-------E-E ( T s -  TL) [78l 
DeHLG 

with 
hE = O.025pLCpL VG = 0.025 Pe krS/De [79] 

where Pe is Peclet number, k is conductivity and De is the equivalent channel diameter. 
The initial irreversible pressure drop (vessel to nozzle, crack, etc.) is taken as 

Ape = K¢ (G~IV~[ + G~IV~ 1)/2~'2 [80] 

where a '  is area ratio (At/Ao), K¢ is irreversible loss coefficient, taken from Idel'chik (1966) and 
G~ and G~ are the mass flow rates of the vapor and liquid phase, respectively. 

The vapor enthalpy source term is taken as: 

QG = -- 4h¢o(TG - TL)/De [81] 

hco = 360CpLPLkLSITG -- TLI/pGHLGDe = 360JaSke/Oe [82] 

Except for the wall friction term which was based on relatively high velocity flow experiments 
in developing the phasic coefficients, the constitutive relations were developed and validated for 
normal flow conditions and uncovery situations. Thus, the use of  this model for critical flow is in 
the form of  a "proof  test". Rather than refer to this model by the long title of this section, the 
shorter notation, "the GSL model", is used. 

4.3.4. The RELAP5/MOD2 model 

This model is described in some detail in its code manual (Ransom et al. 1985); it is derived from 
the model described by Ransom & Trapp (1980) and Trapp & Ransom (1982). The methodology 
breaks the choking process into one with either a two-phase inlet or a subcooled inlet; different 
mathematical approaches are used for each process. For two-phase flow the phases are assumed 
to be in thermal equilibrium. Thermal non-equilibrium is considered for subcooled upstream 
stagnation conditions. 

(1) Two-phase inlet. Although an attempt is made to consider the choking process from the 
viewpoint of  a full set of equations and to determine the critical characteristic applicable to the 

tin addition to those in the other constitutive relations. 
:[:The values used are different from those used in the original publication and were optimized for the data of Sozzi & 

Sutherland. 
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onset of choking, in the end this was considered too speculative. A final choking criterion is 
established as: 

¢PL Vo + (1 -- E)Po VL 
= -+ artE [83] 

EpL + (1 -- E)pG 

where aHE is the HEM speed of sound (see [22d]). It is important to note that the densities in [83] 
appear in the reverse to normal order, thus in defining 2 - PG/Pt the two-phase choking criterion 
can be written as: 

Go + 22GL Jo + 2JL 
FG + 2EFt -- [84] + (1 - E)). = aBE 

At 68 bar (1000psi), 22,~ 1/400 [even at 136 bar (2000psi) 22 ~0.018], therefore, for void 
fractions greater than a very few tenths this criterion is really VG ~ aHE (where VG is the code 
calculated value of the vapor velocity). In practice, the procedure for calculating the terms which 
enter [84] is not trivial since the staggered grid method used in RELAP5/MOD2 evaluates the 
densities and void fraction in the center of the grid but the velocities are evaluated at the junctions. 
As the TRAC manual explicitly statest "the cell centered values have to be upgraded to the junction 
to account for the steep pressure gradients expected in the neighborhood of the choking location". 

(2) Subcooled inlet. For a subcooled inlet, RELAP5/MOD2 assumes that the phases are in 
mechanical equilibrium (no slip) and may be in thermal non-equilibrium. Thus the phasic velocities 
are: 

VL=V~=+_Vo 

where Vc is a choking velocity defined by: 

Vc = max{aHE , [V~ -I- 2(p, -pt)/Pt] I/2} [85] 

Here Vn is the calculated velocity at the upstream junction, p, is the calculated pressure at the 
upstream volume and the throat pressure, Pt, is defined by a modified form of the Alamgir et al. 
(1981) pressure undershoot correlation. 

Pt = Ps - max(Ap, 0) 

a 3/2 T~3"76(1 + 13.25~°s) I/2 
Ap = 0.258 (1 - 2)(kB T~) I/2 - O.07(At/A)2(pV2c/2) [86] 

where TR is the reduced liquid temperature, Tc is the critical temperature, Y. is the rate of 
depressurization and kB is Boltzmann's constant. 

It should be noted that there are a number of discrepancies between the above equations in the 
RELAP5/MOD2 manual and the original publications.:~ 

4.3.5. The T R A C - P F 1 / M O D 1  model 

The methodology used in the TRAC-PF1 model is almost identical with that in RE- 
LAP5/MOD2. The choking criterion for two-phase inlet conditions is based on the critical 
characteristic velocity. Assuming non-homogeneous equilibrium two-phase flow, the final result for 
the choking criterion appears as (Trapp & Ransom 1982): 

V + D ( V o -  VL)= _+a [87] 

In [87] the coefficient D and the two-phase speed of sound, a, are complex functions of the local 
variables and an unknown parameter, labeled " C " ,  which is the coefficient entering the virtual mass 
term. Because C is not known (nor can it be specified from experiment through a correlation), 
RELAP5/MOD2 discards the final result and uses the equation presented in the previous section 
([83]). The TRAC procedure is to utilize the characteristic method ([87]), but the exact value of 
relation used for the unknown parameter C is not stated. 

tThe RELAP5/MOD2 manual makes no such statement. 
:~None of  the constants appear as they were originally published; the term Y- is defined very differently (the RELAP5/MOD2 

manual has it as zero for all pipe ruptures since it defines Z ~ dA [dz Ir while Alamgir defines it as the nearly constant 
rate of  depressurization during the rupture for that portion of  the time that the liquid is superheated). 
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In the subcooled blowdown phase the choking criterion stated in [85] is used with Pt = P~, i.e. 
thermal non-equilibrium at the throat is not considered. It is recognized, however, that a nucleation 
delay model is required to analyze fast transients in which the throat pressure may be much lower 
than the saturation pressure corresponding to the liquid temperature at the junction. 

As with the RELAP5/MOD2 model, one cannot directly utilize this model in a stand-alone 
fashion but should examine it in the context of the rest of the TRAC-PF1/MOD1 model. 

5. E X P E R I M E N T A L  DATA SOURCES 

Over the last 40 or so years, a large number of critical flow experiments have been performed. 
An interesting listing of  some 50 or so references may be found in the NEA report (Britain et al. 
1982). Much of  these data were examined by Ilic et al. (1986) in the preparation of  a qualified 
critical flow database for EPRI. Two major sources of  data not considered by Ilic et al. (1986) and, 
of course, those published since, are Marviken (1982) and Lee & Swinerton (1983). The first source 
provides very large diameter downflow data; the second source provides data in the same 
geometries from 34 to 170 bar (500 to 4500 psia) (well supecritical). The Lee & Swinerton (1983) 
data are not considered in the present work. 

The Marviken facility was used for full-scale critical flow tests between mid-1977 and December 
1979. Twenty-seven tests were conducted by a downward discharge of  water and steam mixtures 
from a full-sized reactor vessel through a large diameter vertical discharge pipe that supplied the 
flow to a test nozzle. Nine nozzles were tested; all had rounded entrances followed by a nominal 
20, 30 or 50 cm constant diameter straight section. Table 4 shows some of  the details of the various 
test nozzles. The discharge pipe that connects the vessel to the nozzle is 6283 mm long and is 
geometrically complex. It is made up of several pieces: a nozzle, permanently attached to the vessel 
with a 752 mm dia, a 1980 mm long drift tube of the same diameter, a 1778 mm long globe valve 
with a 780 mm dia and a 1000 mm 752 mm dia section to which the nozzle is attached. Besides these 
there were two 120 mm long instrument rings inserted on either end of the 1980 mm drift tube. It 
is quite clear that, with this degree of  geometric complexity, the question of establishing a consistent 
set of complete inlet conditions is not simple. 

The Marviken tests considered in this work are those numbered 04, 06, 09, 13, 14, 18, 19, 23 
and 24; they cover five of the nine nozzles and most of  the length range as well. 

5.1. Qualification o f  Data 

In practice, the word "qualified" means whatever the user chooses it to mean. Thus, in the Ilic 
et al. (1986), the word means that the original data sources can be used directly, i.e. the data were 
tabular and not in graphical or analog forms. The best that Ilic did was to indicate that certain 
sets of data might be suspect for one or another reason. Nevertheless, clearly unacceptable data 
were included. Because of  the accessibility of this compilation, it has been made the primary source 
for this review, that is, the winnowing already completed was accepted but many of the primary 
sources have been re-examined as well. 

Sixty-six data sets were considered in this work and then reduced to 42. This process of 
elimination may be considered a form of disqualification. The data sources that have utility in this 
chapter are those which have some relationship to the geometries that might be found in practice 

Table 4. Marviken test nozzles 

Diameter Length Used in 
Nozzle No. (mm) (mm) test No. 

1 200 590 13,14 
2 300 290 6,7 
3 300 511 25,26 
4 300 895 1,2,12 
5 300 1116 17,18,19 
6 500 166 23,24 
7 500 730 20,21,22,27 
8 500 1809 15,16 
9 509 1 5 8 9  3,4,5,8,9,10,11 
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during normal operation or during an accident in light water reactors. Thus, rectangular, annular 
and De Laval nozzles and other converging-diverging geometries generally are not of  great interest 
although the Boivin and Sozzi-Sutherland nozzle 1 are kept. In addition to this "geometric" bias, 
all data were discarded where it was believed that the inlet (i.e. stagnation) conditions are suspect. 
Thus data where throat conditions rather than inlet conditions are given, are not acceptable; neither 
are those experiments where mixing of  separate steam/water sources takes place just before that 
inlet, i.e. where "complete" mixing cannot be assumed. 

Based on an early reading of  Ilic we discarded one of  his 19 primary sources (Fauske 1962) 
because no stagnation (upstream) conditions were published. The resulting data sets (listed in 
table 5) were put into consistent form by estimating all missing stagnation conditions (Po but not 
Ho given or vice versa) and the simple models were used to predict all these data sets. The results 
of this first selection can be seen in figures 5 and 6 where the prediction of  these data is shown 
using the HEM and Moody slip models. 

Although "completing" the data sets by estimating the missing stagnation conditions was 
considered to be possible, further consideration led to the following conclusions: 

• many of the data sources cannot be qualified in any sense of the meaning of the word; 
• a fair percentage of  the data listed in Ilic et al. (1986) is miscopied from the original sources 

[all of  the Ardron (1978) and Boivin (1979) enthalpy data are incorrect]; 
• the data are converted to a consistent set of units, thus altering the number of significant figures 

(from two to seven in some cases); 
• the conversion factors (e.g. ps ia~kPa)  are not listed and use of the ASME 4th Edn conversion 

factors to recover the original data does not reproduce those data. 

Therefore, although the Ilic report was used, the data were reproofed, and many of  the sources 
were discarded as not being usable. Of the 19 original sources (some 60 plus separate geometries), 
nine sources (some 42 separate geometries) are left (see table 6). The reasons for removal of these 
sources are related to significant uncertainties in stagnation conditions or because the geometry was 
not considered appropriate. 

A major problem in dealing with secondary (compiled) data sources lies in the compilers' 
penchant for changing the set of  units that the experimenter used in reporting his data into some 
other set, currently SI. Thus, most experimenters have reported temperature and pressure but the 
Ilic compilation converted temperature to enthalpy. This conversion can be significant when the 
temperatures are very near saturation because different researchers use different algebraic 
formulations for the thermodynamic properties. Indeed, at lower pressures, 0.3°C can be worth 
30% in critical flow in the neighborhood of saturation. 

It should not be presumed that it is believed that the stagnation conditions of  the sources in 
table 6 are accurately reported; there was no reason to reject them. Neither should it be thought 
that the removed cases are better or worse when they are compared to prediction. Tables 7-10 show 
a statistical comparison with the 66 geometries of  table 5 using several of  the simpler models. The 
deleted sources (geometries 3, 14, 15-17, 22-30, 33-37, 41 and 42) contain some of  the best fits 
to data as well as some poor fits; and Bryer (1966) data (cases 2, 4-10), which are not discarded, 
contain some of the worst fits to data. 

Because of the time costs of  computing these 42 geometries, only three sources and 20 geometries 
are used with the space-dependent models. These are listed in table 11 and comprise the Ardron 
& Ackerman (1978), Boivin (1979) and Sozzi & Sutherland (1975) sources. All the 63 cases listed 
in table 6 are used with the analytic and fitting models. 

In using space-dependent models it was preferred to deal with square inlet conditions or smooth 
inlets with large r/D in order to avoid having to choose a contraction unrecoverable loss coefficient 
other than 1/2 or 0.0. The reason for this "bias" is that the task is to attempt to qualify critical 
flow models rather than fit loss coefficients. Most of the space-dependent models can be brought 
into much better agreement by "adjusting" either the loss coefficient or the wall roughness. A 
consistent wall roughness of 4 x 10 -5 mm (1.3 x 10 -6 f t )  has been used in all calculations when a 
roughness is required (only in the "general drift flux model" studies). 
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Table 5. Selected critical flow data from the llic compilation 

L D 
Case Reference (mm) (ram) cos 0 N-data Comments 

1 Ardron & Ackerman (1978) 1015 26.3 0.0 31 
2 Bryers & Hsieh (1966) 152 38 0.0 5 rounded entrance 6.35 mm 
3 Bryers & Hsieh (1966) 533.4 50.8 1.0 4 rec. duct 76.2 x 38.1 mm 
4 Bryers & Hsieh (1966) 305 38 0.0 6 rounded entrance 6.35 mm 
5 Bryers & Hsieh (1966) 152 51 0.0 6 rounded entrance 6.35 mm 
6 Bryers & Hsieh (1966) 305 51 0.0 5 rounded entrance 6.35 mm 
7 Bryers & Hsieh (1966) 406 51 0.0 6 rounded entrance 6.35 mm 
8 Bryers & Hsieh (1966) 305 76 0.0 5 rounded entrance 6.35 mm 
9 Bryers & Hsieh (1966) 610 76 0.0 6 rounded entrance 6.35 mm 

I0 Bryers & Hsieh (1966) 406 51 0.0 4 rounded entrance 6.35 mm 
11 Bryers & Hsieh (1966) 533 51 0.0 6 rounded entrance 6.35 mm 
12 Boivin (1979) 500 12 0.0 I0 D = 50 (z < 0); 

0 < z < 50 rounded entrance; 
D = 12 (50 < z < 500); 
D = 12 + 19 (z - 500), (z < 700); 
D = 50 (z > 700 ram) 

13 Boivin (1979) 1600 30 0.0 5 D = 150 (z < 0); 
0 < z < 130 rounded entrance: 

D = 30 (130 < z < 1730); 
D = 30 + 0.12 (z - 1730), (z < 2305); 
D = 100 (z > 2305 mm) 

14 Boivin (1979) 1700 50 0.0 6 D = 150 (z < 0); 
0 < z < 130 rounded entrance; 

D = 50 (130 < z < 1830); 
D = 50 + 0.12 (z - 1830), (z < 2240); 
D = 100 (z > 2240 mm) 

15 Cruver (1963) 660 13 0.0 33 horizontal tube 
16 Danforth (1941) 13 32 - 1.0 6 rounded entrance 4.76 mm; 

D = 19.05 (3.175 < z < 9.525 mm) 
17 Danforth (1941) 13 32 - !.0 9 rounded entrance 4.76 mm; 

D = 19.05 (3.175 < z < 9.525 mm) 
18 Finke & Collins (1981) 13 44 0.0 92 D = 18.28 (54.7 < z < 79.7); 

D = 18.28 + 0.12 (z - 79.7), (z < 215.9); 
D = 34.9 (z > 2t5.9 mm) 

19 Guizovarn et  al. (1975) 2674 14 1.0 13 D = 14 (z < 2674); 
D = 14 + 0.12 (z - 2674), (z < 2928); 
D = 45 (z > 3209); 
D = 45 + (z - 3209)/6, (z < 3239); 
D = 50 + 0.14 (z - 3389)/6, (z < 3700 mm) 

20 Guizovarn et  al. (1975) 2674 14 1.0 24 D = 29.5 (z < 2230); 
D = 29.5 + 0.12 (z - 2230), (z < 2360); 
D = 14 (z < 2674) 
D = 45 + (z - 3209)/6, (z < 3239); 
D = 50+0.14  (z - 3389), (z < 3700 mm); 

21 Henry (1968) 914 5.8 0.0 35 duct width = 23.6 mm 
height = 3.3 (0 < z < 914.4); 
H =  3.3+0.12 (z -914.4),  (z < 1066.8) 

22 Henry (1968) 914 8 0.0 26 D =  7.95 ( 0 < z  < 914.4 mm); 
D = 7.95 + 3.46 (z - 914.4), (z < 926.77) 

23 Henry (1968) 914 8 0.0 71 D =  7.95 ( 0 < z  < 914.4mm); 
D =7.95 +0.12 (z -914.4),  (z < 1160.45) 

24 Henry (1968) 914 8 0.0 80 D =7.95 ( 0 < z  < 914.4mm); 
D = 7.95 + 3.46 (z - 914.4), (z < 926.77) 

25 Isbin et al. (1957) 609 26 0.0 10 I in. full bore 
26 Isbin et al. (1957) 609 21 0.0 8 1 in. full bore 
27 Isbin et al. (1957) 609 16 0.0 31 1 in. full bore 
28 lsbin et al. (1957) 609 10 0.0 47 1 in. full bore 
29 Isbin et al. (1957) 609 13 0.0 10 1 in. full bore 
30 Isbin et al. (1957) 609 7 0.0 11 1 in. full bore 
31 Jeandey et al. (1981) 463 20 1.0 15 D = 66.7-0 .54z  ( 0 < z  <86.9); 

D = 20.1 (z > 86.9 mm) 

continued opposite 
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Tab~5--continued 

L D 
Case Reference (mm) (mm) cos 0 N-data Comments 

32 Jeandey et al. (1981) 463 20 1.0 73 

33 Morrison (1977) 197 28 0.0 7 

34 Morfison (1977) 64 28 0.0 5 

35 Neusen (1962) 0 11 0.0 25 

36 Neusen (1962) 0 6 0.0 12 

37 Ogasawara (1969) 100 11 0.0 12 

38 Reocreux (1974) 2335 20 1.0 28 

39 Seynhaeve (1980) 306 13 !.0 26 

40 Seynhaeve (1980) 306 13 1.0 31 

41 Schrock et aL (1977) 340 6 - 1 . 0  10 

42 Schrock et al. (1977) 35 4 - 1 . 0  27 

43 Sozzi & Sutherland (1975) 45 12.7 0.0 129 

44 Sozzi & Sutherland (1975) 45 12.7 0.0 13 

45 Sozzi & Sutherland (1975) 57 12.7 0.0 47 

46 Sozzi & Sutherland (1975) 362 12.7 0.0 19 

47 Sozzi & Sutherland (1975) 83 12.7 0.0 17 

48 So77i & Sutberland (1975) 553 12.7 0.0 13 

49 Sozzi & Sutherland (1975) I08 12.7 0.0 23 

50 Sozzi & Sutberland (1975) 679 12.7 0.0 96 

51 Sozzi & Sutherland (1975) 159 12.7 0.0 15 

52 Sozzi & Sutherland (1975) 1823 12.7 0.0 81 

53 Sozzi & Sutherland (1975) 235 12.7 0.0 12 

54 Sozzi & Sutherland (1975) 273 12.7 0.0 22 

55 Sozzi & Sutherland (1975) 5 12.7 0.0 58 
56 Sozzi & Sutherland (1975) 322 12.7 0.0 24 
57 Sozzi & Sutherland (1975) 513 12.7 0.0 24 
58 Sozzi & Sutherland (1975) 640 12.7 0.0 17 
59 Sozzi & Sutherland (1975) 195 12.7 0.0 23 
60 Sozzi & Sutherland (1975) 45 19 0.0 23 

61 Sozzi & Sutherland (1975) 732 54 0.0 4 

62 Sozzi & Sutherland (1975) 696 76 0.0 3 

63 Sozzi & Sutherland (1975) 63 28 0.0 5 

64 Zaloudek (1961) 609.5 13 0.0 16 
65 Zaloudek (1961) 914.4 13 0.0 45 
66 Zaloudek (1961) 609.5 13 0.0 13 

see source for z < I00 ram; 
D =20.13 (100 < z  <463); 
D = 20.13 + 0.12 (z - 463), (z < 900); 
D = 737 (z > 900 mm) 
round inlet (0 < z < 63.5); 
D = 27.94 (z < 196.85 ram) 
round inlet (0 < z < 63.5); 
D = 27.94 + 0.175 (z - 63.5) (z < 228.6 mm) 
D = ! 1.12 mm at throat; 
D =  11.12 + 0.425z ( 0 < z  <35.91 ram) 
D = 6.4 mm at throat; 
D = 6.4 + 0.425z (0 < z < 59.81 mm) 
D = 125 mm at throat (z = 100); 
D =  10.9 (100 < z < 1400ram) 
D = 20 (0 < z < 2335); 
D = 20 + 0.12 (z - 2335), (z < 2662 ram) 
D = 12.5 (0 < z < 306); 
D = 12 .5  + 0 . 2 4 5  ( z  - 306), (z < 541) 
D = 70 (z > 541 mm) 
D =  12.5 ( 0 < z  < 221); 
D = 12 .5  + 0 . 2 4 5  ( z  - 221), (z < 541) 
D = 70 (z > 541 mm) 
D = 6 3 . 5  - 1.68z (0 < z < 34); 
D = 6 . 4  + 0 . 4 2 5  ( z  - 34), (z < 93.8 ram) 
D = 63.5 - 1.68z (0 < z < 35.5); 
D = 3 . 9 6  + 0 . 4 2 5  ( z  - 35.5) (z < 86.3 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5); 
D =  12.7+0.105 (z -44.5) ,  (z < 158.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D -- 43.2 ( z  = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
D = 43.2 (z = 0); 
rounded elliptical sec. (0 < z < 44.5 ram) 
D - 260 - 0.39 (z - 202), (202 < z < 732); 
D -- 54 + 0.263 (z - 732), (z < 1112 mm) 
D = 260 - 0.39 (z - 223), (223 < z < 696); 
D = 76.5 + 0.263 (z - 696), (z < 1076 ram) 
D --- 72.6 (z = 0); 
rounded elliptical sec. (0 < z < 63.5 ram); 
D = 28 + 0.246 (z - 63.5), (z < 228.5 ram) 
round tube 
round tube 
round tube 
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Figure 5. Measured vs predicted critical mass flux using the homogeneous equilibrium model (HEM). 

5.2. Data Uncertainties 

In normal circumstances uncertainties of  0.01 bar (~0 .2ps ia)  or 0.1°C (~0.2°F)  in inlet 
conditions would not be considered significant. However, although the uncertainties in the current 
data are typically small fractions of the absolute values, the dependence of the critical flow 
magnitude on subcooling is so large near saturation at low pressures that even a few tenths of  a 
degree or hundredths of a bar can be worth 10-30% in flow; these effects become less important 
farther away from saturation. The criterion for importance is that the temperature uncertainty, 
whether induced by pressure or enthalpy uncertainties, divided by the nominal subcooling, AT, 
must be significant (>0.1).  Only Ardron & Ackerman (1978) presented estimates of inlet 
uncertainties and these estimates were used to determine the spread in predictions using the GSL 
model (see below). 

These considerations lead to questions about the reported inlet conditions. Unfortunately, it is 
not possible to determine the accuracy of these reported conditions. The uncertainties, as reported 
by Ardron & Ackerman (1978), are extremely small and reflect only signal noise effects. Absolute 
errors may be larger but no firm estimates can be made. A change upwards of 0.1 bar will be more 
than enough to bring all GSL model calculations into exact agreement for the Ardron & Ackerman 
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(1978) experiments (all inlet pressures < 3.7 bars); an examination of the reported data indicates 
absolute reliabilities probably exclude 0.1 bar errors (accomplished by examining paired calcu- 
lations with equal reported inlet subcooling) but not with high confidence. 

Although arguments can be made with respect to the data that absolute errors of + 1/2 to 2% 
are not unreasonable and even likely, such potential "errors" are not considered as a means to 
quantify and qualify models except for using the Ardron & Ackerman (1978) data as an example. 
All data points of those sources which are "accepted" are treated equally with the exception of 
two of the data points measured by Sozzi & Sutherland (1975) which are discarded because the 
original data source is not readable (Ilic chose to fill in the missing digits but the result is clearly 
in error). 

5.2.1. Uncertainties in Marviken data inlet conditions 

As could be expected for a large-scale experiment such as Marviken there was extensive and 
redundant instrumentation. Even so it is not easy to pick a set of  consistent measurements which 
can be used to define a set of  inlet stagnation conditions. This is particularly true during the early 
single-phase portion of  the blowdowns (certainly for t < 10 s). At the bot tom of the vessel the 20:1 
averaged pressures jump up and down instead of  going down smoothly (pressure sensor M I06), 
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Figure 6. Measured vs predicted critical mass flux using the Moody model with slip. 
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Table  6. M o s t  qual if ied cri t ical  flow d a t a  f rom the l l ic  compi l a t ion  

L D 
Case Reference (mm)  (mm) cos 0 N - d a t a  C o m m e n t s  

1 A r d r o n  & A c k e r m a n  (1978) 1015 26.3 0.0 31 
2 Bryers & Hsieh  (1966) 152 38 0.0 5 rounded  entrance 6.35 m m  
4 Bryers & Hsieh (1966) 305 38 0.0 6 rounded  entrance 6.35 m m  
5 Bryers & Hsieh  (1966) 152 51 0.0 6 rounded  entrance 6.35 m m  
6 Bryers & Hsieh  (1966) 305 51 0.0 5 rounded  entrance 6.35 m m  
7 Bryers  & Hsieh  (1966) 406 51 0.0 6 rounded  ent rance  6.35 m m  
8 Bryers & Hsieh  (1966) 305 76 0.0 5 rounded  ent rance  6.35 m m  
9 Bryers & Hsieh  (1966) 610 76 0.0 6 rounded  ent rance  6.35 m m  

10 Bryers & Hsieh  (1966) 406 51 0.0 4 rounded  ent rance  6.35 m m  
11 Bryers & Hsieh  (1966) 533 51 0.0 6 rounded  ent rance  6.35 mm 
12 Boivin (1979) 500 12 0.0 10 D = 50 (z < 0); 

13 Boivin  (1979) 1600 30 0.0 5 

14 Boivin (1979) 1700 50 0.0 6 

18 F inke  & Col l ins  (1981) 13 44 0.0 92 

19 Gu izova rn  et al. (1975) 2674 14 1.0 13 

20 G u i z o v a r n e t  al. (1975) 2674 14 1.0 24 

31 Jeandey  et al. (1981) 463 20 1.0 15 

32 Jeandey et al. (1981) 463 20 1.0 73 

38 Reocreux  (1974) 2335 20 1.0 28 

39 Seynhaeve  (1980) 306 13 1.0 26 

40 Seynhaeve  (1980) 306 13 1.0 31 

43 Sozzi & Su ther land  (1975) 45 12.7 0.0 129 

44 Sozzi & Su the r l and  (1975) 45 12.7 0.0 13 

45 Sozzi & Su ther land  (1975) 57 12.7 0.0 47 

46 Sozzi & Su the r l and  (1975) 362 12.7 0.0 19 

47 Sozzi & Su ther land  (1975) 83 12.7 0.0 17 

48 Sozzi & Su ther land  (1975) 553 12.7 0.0 13 

49 Sozzi & Su ther land  (1975) 108 12.7 0.0 23 

0 < z < 50 rounded  entrance;  
D = 1 2  ( 5 0 < z < 5 0 0 ) ;  
D = 12 + 19 (z -- 500), (z < 700); 
D = 50 (z > 700 mm)  
D = 1 5 0  ( z < 0 ) ;  
0 < z < 130 rounded  entrance;  

D = 30 (130 < z < 1730); 
D = 30 + 0.12 (z - 1730), (z < 2305); 
D = 100 (z > 2305 mm)  
D = 1 5 0  ( z < 0 ) ;  
0 < z < 130 rounded  entrance;  

D = 5 0  (130 < z  < 1830); 
D = 50 + 0.12 (z - 1830), (z < 2240); 
D = 100 (z > 2240 mm)  
D = 18.28 (54.7 < z < 79.7); 
D = 18.28 + 0.12 (z - 79.7), (z < 215.9); 
D = 34.9 (z > 215.9 mm)  
D = 14 (z < 2674); 
D = 14 + 0.12 (z - 2674), (z < 2928); 
D = 45 (z > 3209) 
D = 45 + (z - 3209)/6, (z < 3239); 
D = 50 + 0.14 (z - 3389)/6, (z < 3700 mm)  
D = 29.5 (z < 2230); 
D = 29.5 + 0.12 (z - 2230), (z < 2360); 
D = 14 (z < 2674) 
D = 45 + (z - 3209)/6, (z < 3239); 
D = 50 + 0.14 (z - 3389), (z < 3700 mm)  
D = 66.7 - 0.54z (0 < z < 86.9); 
D = 20.1 (z > 86.9 mm)  
see source  for z < 100 mm;  
D = 2 0 . 1 3  (100 < z <463) ;  
D = 20.13 + 0.12 (z - 463), (z < 900); 
D = 737 (z > 900 mm)  
D = 2 0 ( 0 < z < 2 3 3 5 ) ;  
D = 20 + 0.12 (z - 2335), (z < 2662 mm)  
D = 12.5 (0 < z < 306); 
D = 12.5 + 0.245 (z - 306), (z < 541) 
D = 7 0 ( z  > 5 4 1 m m )  
D = 12.5 (0 < z < 221); 
D = 12.5 + 0.245 (z - 221), (z < 541) 
D =  70 (z > 541 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5); 
D =  1 2 . 7 + 0 . 1 0 5  (z - 4 4 . 5 ) ,  (z < 158.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  
D = 43.2 (z = 0); 
rounded  convergent  (0 < z < 44.5 mm)  

continued opposite 
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L D 
Case Reference (mm) (mm)  cos 0 N-data Comments 

50 Sozzi & Sutherland (1975) 679 12.7 0.0 96 

51 Sozzi & Sutherland (1975) 159 12.7 0.0 15 

52 Sozzi & Sutherland (1975) 1823 12.7 0.0 81 

53 Sozzi & Sutherland (1975) 235 12.7 0.0 12 

54 Sozzi & Sutherland (1975) 273 12.7 0.0 22 

55 Sozzi & Sutherland (1975) 5 12.7 0.0 58 
56 Sozzi & Sutherland (1975) 322 12.7 0.0 24 
57 Sozzi & Sutherland (1975) 513 12.7 0.0 24 
58 Sozzi & Sutherland (1975) 640 12.7 0.0 17 
59 Sozzi & Sutherland (1975) 195 12.7 0.0 23 
60 Sozzi & Sutherland (1975) 45 19 0.0 23 

61 Sozzi & Sutherland (1975) 732 54 0.0 4 

62 Sozzi & Sutherland (1975) 696 76 0.0 3 

63 Sozzi & Sutherland (1975) 63 28 0.0 5 

D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
D = 43.2 (z = 0); 
rounded elliptical sec. (0 < z < 44.5 mm) 
D = 260 - 0.39 (z - 202), (202 < z < 732); 
D = 54 + 0.263 (z - 732), (z < 1112 ram) 
D = 260 - 0.39 (z - 223), (223 < z < 696); 
D = 76.5 + 0.263 (z -- 696), (z < 1076 mm) 
D = 72.6 (z = 0); 
rounded elliptical sec. (0 < z < 63.5 mm); 
D = 28 + 0.246 (z - 63.5), (z < 228.5 mm) 

and  the 50:1 averaged temperatures (sensors M521 and  M402) do so also. As long as the fluid is 
substant ial ly subcooled this type of behavior  is not  a great difficulty; but  when the fluid is essentially 
saturated,  small discrepancies can change the inlet condi t ion  from subcooled to two-phase and  back 
again. This can give a computer  code a bad case of the dithers. Condi t ions  are not  part icularly 
better at the entrance to the nozzle. The pressure sensor M 109 (0.7 m above the nozzle using 20:1 
averaging) shows + 20% jumps  in pressure over 0.1 s dur ing the first second and  + 5% jumps  in 
0.5 s dur ing the next 2-3 s. Because of these considerations,  none  of  the data  from the first 5 s is 
used. 

It should be pointed out  that  a great deal of  care was taken by the Markiven  staff to reasonably 
establish s tagnat ion  condi t ions  at the entrance to the discharge tube and to the nozzle. For  some 
tests the problems we have alluded to are less impor tan t  than  for others but  they are never simple. 
For  example, the following quote from volume 1, section 8.1.2, is presented: 

" . . . ,  the ins t rumenta t ion  used to evaluate the nozzle inlet condi t ions  was situated 
between 2.8 and  7.6 m from the nozzle inlet. Consequent ly,  a n u m b e r  of  factors must  
be considered when defining the true nozzle inlet condi t ions" .  

Except for the T R A C - P F 1 / M O D 1  calculations, the discharge pipe inlet condi tons  specified by 
pressure sensor M106, and  temperature sensor M402, are taken. The T R A C - P F 1  condi t ions  will 
be discussed when the T R A C - P F 1  results are considered. 

5.2.2 Effects of uncertainties 

This brief  section presents the effects of  inlet uncertainties on predicting critical flow. As 
discussed in section 5.2, only the Ard ron  & Ackerman  (1978) (A&A) data  presented estimates of  
all inlet /outlet  uncertainties.  The GSL model  has been chosen for this investigation. 

The A&A experiments (except one which was not  used) all have subcooled inlet condit ions.  
Table  12 shows the inlet condi t ions  and  the measured and calculated flow condit ions.  The two 
subcoolings (runs 24 and  26) which conta in  two decimal places are as A &A  reported them. The 
reported uncertaint ies are given in table 13(a); in table 13(b) are shown the repeatabili ty 
uncertaint ies for a series of  runs  dur ing  which an a t tempt  was made to keep the critical flow rate 
at 8000 kg/m 2 s. Table 14 shows the mean  and  s tandard  deviat ion for all the cases yet to be 

MF 20/7 Sup~-I 
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Table 7. Predictions of  all the data in table 5 using the fit to the Moody model 

Mean SD 

Case (mm) (mm) cos 0 N-data  \ \  Gm , / /  

1 1015 26.3 0.0 31 0.230 0.238 
2 152 38 0.0 5 -4 .882  3.191 
3 533.4 50.8 1.0 4 - 5.942 3.222 
4 305 38 0.0 6 -4 .985  3.626 
5 152 51 0.0 6 -4 .010  2.396 
6 305 51 0.0 5 -6 .352  4.723 
7 406 51 0.0 6 -5 .810  4.383 
8 305 76 0.0 5 -6 .872  4.517 
9 610 76 0.0 6 - 6.494 4.970 

10 406 51 0.0 4 - 4.578 2.285 
I 1 533 51 0.0 6 - 8.589 7.374 
12 500 12 0.0 10 -0 .170  0.161 
13 1600 30 0.0 5 - 0.389 0.128 
14 1700 50 0.0 6 - 0.001 0.126 
15 660 13 0.0 33 - 1.125 1.415 
16 13 32 - 1.0 6 -63.01 3.725 
17 13 32 - 1.0 9 -65 .15  9.667 
18 13 44 0.0 92 - 0.280 0.395 
19 2674 14 1.0 13 0.265 0.170 
20 2674 14 1.0 24 -- 0.175 0.239 
21 914 5.8 0.0 35 -0 .028  0.310 
22 914 8 0.0 26 -- 1.318 1.539 
23 914 8 0.0 71 --2.593 2.509 
24 914 8 0.0 80 --0.585 0.662 
25 609 26 0.0 10 -- 2.860 2.137 
26 609 21 0.0 8 -- 1.131 1.671 
27 609 16 0.0 31 --0.716 1.215 
28 609 10 0.0 47 --0.259 0.752 
29 609 13 0.0 I0 - 1.132 1.665 
30 609 7 0.0 11 -- 0.469 1.089 
31 463 20 1.0 15 -0 .014  0.132 
32 463 20 1.0 73 -0 .014  0.165 
33 197 28 0.0 7 - 0.376 0.332 
34 64 28 0.0 5 - 0.174 0.228 
35 0 11 0.0 25 - 0.646 0.107 
36 0 6 0.0 12 -0 .311 0.243 
37 100 11 0.0 12 - 5.155 1.795 
38 2335 20 1.0 28 --0.498 0.248 
39 306 13 1.0 26 - 0.024 0.128 
40 306 13 1.0 31 - 0.026 0.109 
41 340 6 - 1.0 I0 0.226 0.158 
42 35 4 - 1.0 27 0.341 0.256 
43 45 12.7 0.0 129 0.092 O. 189 
44 45 12.7 0.0 13 0.246 0.126 
45 57 12.7 0.0 47 0.093 0.189 
46 362 12.7 0.0 19 -0 .383  0.246 
47 83 12.7 0.0 17 0.025 0.205 
48 553 12.7 0.0 13 - 0.449 0.260 
49 108 12.7 0.0 23 -0 .135  0.198 
50 679 12.7 0.0 96 -0 .512  0.255 
51 159 12.7 0.0 15 -0 .190  0.196 
52 1823 12.7 0.0 81 -0 .761 0.304 
53 235 12.7 0,0 12 -0.301 0~206 
54 273 12.7 0.0 22 - 0.405 0.154 
55 5 12.7 0.0 58 0.124 0.092 
56 322 12.7 0.0 24 -0 .585  0.161 
57 513 12.7 0.0 24 -0 .615  0.190 
58 640 12.7 0.0 17 - 0.694 0.203 
59 195 12.7 0.0 23 -0 .410  0.203 
60 45 19 0.0 23 -0.111 0.120 
61 732 54 0.0 4 -0 .347  0.027 
62 696 76 0.0 3 - 0.483 0.036 
63 63 28 0.0 5 - 0.054 0.16 t 
64 609.5 13 0.0 16 -0 .012  0.250 
65 914.4 13 0.0 45 - 0.443 0.955 
66 609.5 13 0.0 13 -0 .810  0.891 
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Table.8. Predictions of all the data in table 5 using the fit to the isenthalpic model 

Case 

Mean SD 

(mm) (ram) cos 0 N-data \\ Gm ] / 

1 1015 26.3 0.0 31 0.391 0.136 
2 152 38 0.0 5 -- 5.144 !.563 
3 533.4 50.8 1.0 4 -- 7.393 3.305 
4 305 38 0.0 6 --5.329 2.180 
5 152 51 0.0 6 --4.711 1.917 
6 305 51 0.0 5 -- 6.431 2.263 
7 406 51 0.0 6 -- 6.086 2.459 
8 305 76 0.0 5 -- 7.156 2.064 
9 610 76 0.0 6 --6.743 2.610 

lO 406 51 0.0 4 -- 5.738 2.255 
11 533 51 0.0 6 -- 8.833 4.625 
12 500 12 0.0 lO --0.418 0.634 
13 1600 30 0.0 5 --0.167 0.241 
14 1700 50 0.0 6 0.088 0.073 
15 660 13 0.0 33 200.8 198.0 
16 13 32 -- 1.0 6 6759.0 729.4 
17 13 32 -- 1.0 9 7181.0 542.8 
18 13 44 0.0 92 --0.105 0.049 
19 2674 14 1.0 13 84.45 72.14 
20 2674 14 1.0 24 91.16 69.95 
21 914 5.8 0.0 35 103.6 88.75 
22 914 8 0.0 26 55.54 79.26 
23 914 8 0.0 71 32.99 77.68 
24 914 8 0.0 80 O. 185 0.359 
25 609 26 0.0 I0 956.6 280.9 
26 609 21 0.0 8 773.2 598.9 
27 609 16 0.0 31 694.8 456.9 
28 609 10 0.0 47 863.2 769.2 
29 609 13 0.0 10 733.2 499.4 
30 609 7 0.0 11 651.1 256.8 
31 463 20 1.0 15 -- 0.022 0.079 
32 463 20 1.0 73 0.098 O. 115 
33 197 28 0.0 7 0.112 0.209 
34 64 28 0.0 5 0.230 O. 150 
35 0 11 0.0 25 O. 170 0.075 
36 0 6 0.0 12 0.263 O. 149 
37 100 I 1 0.0 12 --4.300 O. 170 
38 2335 20 1.0 28 --0.777 0.196 
39 306 13 1.0 26 -- O. 177 O. 199 
40 306 13 1.0 31 -- 0.330 0.354 
41 340 6 -- 1.0 lO 0.224 0.383 
42 35 4 -- 1.0 27 0.270 0.382 
43 45 12.7 0.0 129 0.359 0.128 
44 45 12.7 0.0 13 0.461 0.062 
45 57 12.7 0.0 47 0.357 0.064 
46 362 12.7 0.0 19 --0.577 0.058 
47 83 12.7 0.0 17 0.227 O. 1 04 
48 553 12.7 0.0 13 --0.117 0.068 
49 108 12.7 0.0 23 O. 155 0.074 
50 679 12.7 0.0 96 --0.245 O. 138 
51 159 12.7 0.0 15 O. 122 0.078 
52 1823 12.7 0.0 81 --0.520 0.221 
53 235 12.7 0.0 12 0.058 0.054 
54 273 12.7 0.0 22 0.034 0.071 
55 5 12.7 0.0 58 0.308 0.21 l 
56 322 12.7 0.0 24 --0.164 0.093 
57 513 12.7 0.0 24 --0.202 0.108 
58 640 |2.7 0.0 17 --0.255 O. 108 
59 195 12.7 0.0 23 --0.014 0.047 
60 45 19 0.0 23 0.265 0.073 
61 732 54 0.0 4 0.097 0.026 
62 696 76 0.0 3 0.014 0.035 
63 63 28 0.0 5 0.246 0.07 l 
64 609.5 13 0.0 16 143.9 70.12 
65 914.4 13 0.0 45 80.93 88.89 
66 609.5 13 0.0 13 103.0 138.4 
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Table 9. Predictions of all the data in table 5 using the fit to the HEM model 

Mean SD 
L o /Go-Go\ /(Go- cy  

Case (mm) (mm) cos0 N-data \ Gm / \ \  Gm ] /  

1 1015 26.3 0.0 31 0.762 0.124 
2 152 38 0.0 5 -4.492 1.527 
3 533.4 50.8 1.0 4 - 6.515 2.769 
4 305 38 0.0 6 -4.702 1.966 
5 152 51 0.0 6 -4.132 1.721 
6 305 51 0.0 5 - 5.663 2.232 
7 406 51 0.0 6 - 5.401 2.262 
8 305 76 0.0 5 -- 6.300 2.058 
9 610 76 0.0 6 - 6.005 2.424 

10 406 51 0.0 4 - 5.050 1.850 
11 533 51 0.0 6 -7 .864 4.276 
12 500 12 0.0 10 -0.053 0.057 
13 1600 30 0.0 5 -0 .144 0.279 
14 1700 50 0.0 6 0.083 0.096 
15 660 13 0.0 33 - 0.562 1.422 
16 13 32 -- 1.0 6 -21.580 0.992 
17 13 32 - 1.0 9 -21.820 4.908 
18 13 44 0.0 92 - 0.029 0.029 
19 2674 14 1.0 13 0.789 0.044 
20 2674 14 1.0 24 0.597 0.086 
21 914 5.8 0.0 35 0.659 0.108 
22 914 8 0.0 26 0.029 0.867 
23 914 8 0.0 71 - 0.633 1.481 
24 914 8 0.0 80 0.163 0.387 
25 609 26 0.0 10 - 2.708 2.276 
26 609 21 0.0 8 -0 .839 1.761 
27 609 16 0.0 31 -0 .402 1.271 
28 609 10 0.0 47 0.174 0.903 
29 609 13 0.0 10 --0.682 1.860 
30 609 7 0.0 11 -0.017 1.214 
31 463 20 1.0 15 - 0.039 0.104 
32 463 20 1.0 73 0.076 0.124 
33 197 28 0.0 7 0.087 0.207 
34 64 28 0.0 5 0.218 0.151 
35 0 11 0.0 25 0.181 0.089 
36 0 6 0.0 12 0.283 0.145 
37 100 11 0.0 12 -4.256 0.143 
38 2335 20 1.0 28 - 0.680 0.120 
39 306 13 1.0 26 -0.112 0.033 
40 306 13 1.0 31 - 0.089 0.059 
41 340 6 - 1.0 10 0.206 0.391 
42 35 4 - 1.0 27 0.274 0.369 
43 45 12.7 0.0 129 0.363 0.126 
44 45 12.7 0.0 13 0.467 0.068 
45 57 12.7 0.0 47 0.362 0.066 
46 362 12.7 0.0 19 -0.021 0.151 
47 83 12.7 0.0 17 0.227 0.117 
48 553 12.7 0.0 13 -0.110 0.088 
49 108 12.7 0.0 23 0.160 0.086 
50 679 12.7 0.0 96 -0.243 0.154 
51 159 12.7 0.0 15 0.125 0.087 
52 1823 12.7 0.0 81 - 0.524 0.230 
53 235 12.7 0.0 12 0.066 0.059 
54 273 12.7 0.0 22 0.054 0.08 I 
55 5 12.7 0.0 58 0.313 0.211 
56 322 12.7 0.0 24 -0 .154 0.101 
57 513 12.7 0.0 24 -0 .194 0.126 
58 640 12.7 0.0 17 -0.239 0.112 
59 195 12.7 0.0 23 - 894.8 2965.0 
60 45 19 0.0 23 0.278 0.072 
61 732 54 0.0 4 0.111 0.027 
62 696 76 0.0 3 0.031 0.036 
63 63 28 0.0 5 0.273 0.083 
64 609.5 13 0.0 16 0.639 0.133 
65 914.4 13 0.0 45 0.100 0.976 
66 609.5 13 0.0 13 - 0.421 0.939 
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Table 10. Predictions of all the data in table 5 using the fit to the Moody model 

Case 

M ~ n  

(mm) (ram) cos 0 N-data 

SD 

\ a . ) l  
1 1015 
2 152 
3 533.4 
4 305 
5 152 
6 305 
7 406 
8 305 
9 610 

10 406 
11 533 
12 500 
13 1600 
14 1700 
15 660 
16 13 
17 13 
18 13 
19 2674 
20 2674 
21 914 
22 914 
23 914 
24 914 
25 609 
26 609 
27 609 
28 609 
29 609 
30 609 
31 463 
32 463 
33 197 
34 64 
35 0 
36 0 
37 100 
38 2335 
39 306 
40 306 
41 340 
42 35 
43 45 
44 45 
45 57 
46 362 
47 83 
48 553 
49 108 
50 679 
51 159 
52 1823 
53 235 
54 273 
55 5 
56 322 
57 513 
58 640 
59 195 
60 45 
61 732 
62 696 
63 63 
64 609.5 
65 914.4 
66 609.5 

26.3 0.0 31 0.214 
38 0.0 5 --4.489 
50.8 1.0 4 --6.518 
38 0.0 6 --4.704 
51 0.0 6 --4.131 
51 0.0 5 -- 5.667 
51 0.0 6 -- 5.398 
76 0.0 5 - 6.297 
76 0.0 6 -6.004 
51 0.0 4 - 5.051 
51 0.0 6 --7.869 
12 0.0 10 -0 .188  
30 0.0 5 -0.410 
50 0.0 6 -0.035 
13 0.0 33 - 1.132 
32 - 1.0 6 -64.30 
32 - 1.0 9 -65.58 
44 0.0 92 -0.029 
14 1.0 13 0.255 
14 1.0 24 -0.185 
5.8 0.0 35 -0.043 
8 0.0 26 - 1.305 
8 0.0 71 -2.558 
8 0.0 80 - 0.582 

26 0.0 lO --2.878 
21 0.0 8 -- 1.104 
16 0.0 31 -0.691 
lO 0.0 47 -0.238 
13 0.0 10 - 1.056 
7 0.0 11 - 0.440 

20 1.0 15 -0 .120 
20 1.0 73 -0.081 
28 0.0 7 -0.361 
28 0.0 5 -0.161 
I 1 0.0 25 - 0.647 
6 0.0 12 -0 .314 

11 0.0 12 -4 .256 
20 l.O 28 -0.657 
13 l.O 26 -0.128 
13 I.O 31 -0.094 
6 - l.O 10 0.092 
4 - l.O 27 0.207 

12.7 0.0 129 0.080 
12.7 0.0 13 0.243 
12.7 0.0 47 0.089 
12.7 0.0 19 -0.395 
12.7 0.0 17 - 0.006 
12.7 0.0 13 -0.465 
12.7 0.0 23 -0 .150 
12.7 0.0 96 -0.582 
12.7 0.0 15 -0.192 
12.7 0.0 81 -0 .874 
12.7 0.0 12 -0.300 
12.7 0.0 22 -0.395 
12.7 0.0 58 0.080 
12.7 0.0 24 -0.587 
12.7 0.0 24 -0 .636 
12.7 0.0 17 -0,707 
12.7 0.0 23 -0.402 
19 0.0 23 -0.107 
54 0.0 4 -0 .342 
76 0.0 3 -0.480 
28 0.0 5 --0.046 
13 0.0 16 0.001 
13 0.0 45 - 0.452 
13 0.0 13 -0.827 

0.238 
1.528 
2.761 
1.970 
1.721 
2.242 
2.258 
2.058 
2.425 
1.854 
4.280 
O.llO 
0.170 
0.078 
1.469 
3.949 
8.951 
0.029 
0.180 
0.250 
0.307 
1.515 
2.473 
0.641 
2.152 
1.646 
1.185 
0.799 
1.673 
1.055 
0.018 
0.093 
0.316 
0.223 
0.088 
0.244 
O. 142 
0.108 
0.035 
0.055 
0.289 
0.361 
0.171 
0.116 
0.213 
0.213 
0.172 
0.226 
0.170 
0.156 
0.182 
0.202 
0.193 
0.157 
0.132 
0.122 
0.115 
0.132 
0.198 
0.122 
0.026 
0.035 
0.164 
0.242 
0.956 
0.903 
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Table 11. Selected critical flow data usable with the space-dependent models 

L D 
Reference (mm) (mm) cos 0 N-data Comments 

1 Ardron & Aekerman (1978) 1015 26.3 0.0 31 
12 Boivin (1979) 500 12 0.0 10 

13 Boivin (1979) 1600 30 0.0 5 

14 Boivin (1979) 1700 50 0.0 6 

43 Sozzi & Sutherland (1975) 45 12.7 0.0 129 

44 Sozzi & Sutherland (1975) 45 12.7 0.0 13 

45 Sozzi & Sutherland (1975) 57 12.7 0.0 47 

46 Sozzi & Sutherland (1975) 362 12.7 0.0 19 

47 Sozzi & Sutherland (1975) 83 12.7 0.0 17 

48 Sozzi & Sutherland (1975) 553 12.7 0.0 13 

49 Sozzi & Sutherland (1975) 108 12.7 0.0 23 

50 Sozzi & Sutherland (1975) 679 12.7 0.0 96 

51 Sozzi & Sutherland (1975) 159 12.7 0.0 15 

52 Sozzi & Sutherland (1975) 1823 12.7 0.0 81 

53 Sozzi & Sutherland (1975) 235 12.7 0.0 12 

54 Sozzi & Sutherland (1975) 273 12.7 0.0 22 

55 Sozzi & Sutherland (1975) 5 12.7 0.0 58 
56 Sozzi & Sutherland (1975) 322 12.7 0.0 24 
57 Sozzi & Sutherland (1975) 513 12.7 0.0 24 
58 Sozzi & Sutherland (1975) 640 12.7 0.0 17 
59 Sozzi & Sutherland (1975) 195 12.7 0.0 23 
60 Sozzi & Sutherland (1975) 45 19 0.0 23 

D = 5 0  ( z < 0 ) ;  
0 < z < 50 rounded entrance; 

D = 1 2 ( 5 0 < z < 5 0 0 ) ;  
D = 12 + 19 (z - 500), (z < 700); 
D =50  ( z > 7 0 0 m m )  
D = 1 5 0  ( z < 0 ) ;  
0 < z < 130 rounded entrance; 

D = 3 0  (130 < z  < 1730); 
D = 30 + 0.12 (z - 1730), (z < 2305); 
D = 100 (z > 2305 mm) 
D = 1 5 0  ( z < 0 ) ;  
0 < z < 130 rounded entrance; 

D =  50 (130 < z  < 1830); 
D = 50 + 0.12 (z - 1830), (z < 2240); 
D = 100 (z > 2240 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5); 
D = 12.7 + 0.105 (z - 44.5), (z < 158.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 ram) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
D = 43.2 (z = 0); 
rounded convergent (0 < z < 44.5 mm) 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
Nozzle No. 3 
D = 43.2 (z = 0); 
rounded elliptical sec. (0 < z < 44.5 mm) 

analysed. The following observations could be made on the effect o f  data uncertainties on the 
predictions: 

Effect of inlet temperature uncertainty. It was not considered necessary to recalculate all points 
completely for each type o f  uncertainty. Thus, reduced set 1 contains 20 experiments, and the inlet 
temperature is reduced by the uncertainty listed in table 13(a) (0.1°C applied to each value in 
table 12) and each such case was recalculated; the case by case changes are shown in table 15(a) 
and the statistics in table 14. The effect o f  0.1°C is 2.3% in mass flow, on average, while for 
individual cases it can be 5-8%. 

Effect of pressure uncertainty. After reducing the test data set still further to 14 experiments, the 
effect o f  increasing the inlet pressure by 0.01 bar and then the simultaneous effect o f  both 
uncertainties were examined. The pressure effect contributes 4% on average, and the combined 
effects 6%, on average. In all such cases, the standard deviation is reduced as well, indicating that 
all calculations are closer to the correct values, on average. The individual cases are shown in tables 
15(b) and (c). 
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Effect of O. I bar uncertainty. Table 13(b) indicates that a pressure uncertainty of 1.25% can be 
expected from repeatability considerations. Table 15(d) shows the effect of a 0.1 bar (plus 0.1 °C) 
uncertainty which spans the range of 2.5-4% in inlet pressure uncertainty. This set of conditions 
(see table 14) carries the statistics from an error of + 14 to - 15%, indicating that pressure errors 
of 0 - 2 0  would be sufficient to bring all the A&A calculations into exact accord with measurement. 

The attempt to validate data sets or to establish bounds on the value of various constitutive 
relations hinges in many cases on small differences in calculations (the nodalization, for example) 
or on the ability of the experimenter to measure quantities extremely precisely. Were the full 
statistical dimensionality of the measured and calculated flow rates to be laid out graphically, a 
perfect fit would be found (with the model used here for this demonstration). 

The GSL model prediction and the A&A data are statistically nearly identical, although the 
nominal result shows a mean error of + 18%. A far closer degree of attention by the experimenter 
is required to provide a clean differentiation, if any is warranted, between the model and 
experiment. 

6. MODEL EVALUATION 

In other analyses, several models have been shown simultaneously and compared against a given 
data set. Here this process does not appear useful. Consider the data in three steps: 

• table 6 (1070 data points) 
• table 11 (712 data points) 
• Marviken (145 data points). 

The data are further divided into subcooled and two-phase inlet so that there are six types of 
statistical and scatter plot graphs to be considered. 

Table 12. Effect of  inlet condition uncertainties on calculated critical flow rates; nominal 
inlet conditions 

Ardron & Ackerman experiments 

1 2.21 4.6 11584.28 13262.86 
2 2.16 3.6 10254.19 10486.29 
3 2.08 3.3 9454.17 10885.78 
4 2.05 2.3 7877.55 9497.57 
5 2.03 2.3 7902.27 9497.57 
6 1.99 0.7 4833.52 7070.76 
7 1.90 0.1 3108.53 5662.61 
8 2.64 2.4 9252.74 11784.58 
9 2.55 2.3 8696.29 10686.01 

l0 2.50 1.6 7534.28 9287.85 
II 2.47 0.6 4858.02 6871.04 
12 2.99 1.5 7721.81 9966.99 
13 3.00 0.5 5505.55 7729.90 
14 2.03 2.5 8261.98 9687.35 
15 3.55 0.2 4966.70 6751.18 
16 2.07 1.7 6619.77 8998.21 
17 1.77 4.5 10153.89 10830.69 
18 1.73 4.5 10134.53 10885.78 
19 1.66 3.6 8969.35 9148.05 
20 1.59 1.6 5767.25 7729.90 
21 1.55 0.5 3758.68 6501.48 
22 1.54 0.6 3787.03 5892.32 
23 1.90 7.2 13333.36 13781.96 
24 1.91 7.0 13140.13 13582.24 
25 2.15 7.9 10453.52 11584.86 
26 3.06 1.1 6849.92 9617.42 
27 3.65 0.3 5418.02 7719.91 
28 3.60 0.2 5196.70 7779.84 
29 1.92 6.9 13176.89 13881.87 
30 2.20 3.7 10234.78 11784.58 
31 3.67 0.4 10031.06 7719.91 

Pressure Inlet sub. G=lc. Gm,,. 
Run (bar) (°C) (kg/m2/s) (kg/m2/s) 
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Table 13(a). Estimated errors due mainly to signal 
noise 

Quanti ty Uncertainty 

Absolute pressure + 700 N/m 2 
Differential pressure _+_ 400 N/m 2 
Mass velocity + 200 kg/m2/s 
Liquid temperature __. 0.1 °C 
Void fraction + 0.005 

Table 13(b). Uncertainty for repeated runs 

Condition Value Fraction 

Entrance pressure 1,410 _ 0.03 bar ___ 1.25% 
Entrance temperature (subcooling) 0.8 + 0.25°C + 31.3% 
Mass  flow rate 7500 + 370 kg/m2/s + 4.93% 

Except for the scatter plots, no attempt is made to agglomerate the data statistically and global 
statistics are not produced. If each of  the approximately 40 geometries of  table 6 is considered 
separately, only nine have more than 30 data points each and 15 have ten or less data points. 
Although means and standard deviations have been produced mechanically, for each set, only those 
with 15 or more data points should be considered as having some significance in the sense that 
the uncertainty in the mean is not large. 

No trends were found in the quality of fit, between the calculated and measured results, with 
respect to pressure, length, diameter, L/D or any other parameter that holds between exper- 
imenters, although some intra-experimenter trends with some models were found. This is most clear 
with the Sozzi & Sutherland (1975) experiments, where there is a definite tendency for the mean 
value to change sign as L/D increases (for nozzles 2 and 3). But this trend is different for different 
models and some models do not show it at all. 

The only statistical indicator considered here is the dimensionless indicator. 
Mean 

1 N 

Standard deviation 

Uncertainty in the mean 

(9"= ~ n=l L am<as /2 

6. I. The Table 6 Experiments 

These experiments comprise nearly 1100 data points with pressures from 1 to l l 6ba r  
(15-1700psia), diameters from 1.25 to 7.5cm (1/2-3 in.) and lengths from approx. 4 m m -3  m 
(1/6 in.-9 ft). They are mostly horizontal but 7 sets of data (approx. 200 data points) are vertical 
upflow. 

Table 14. Effect of  inlet uncertainties on calculated critical flow statistics for the 
Ardron & Ackerman (1978) experiments 

Statistics 

Inlet conditions N-data Mean SD 

Nominal - -a l l  data points 31 
Nominal - - reduced  data set I 20 
Set I: temperature uncertainty 20 

Nominal - - reduced data set 11 14 
Set lh  pressure uncertainty 14 
Set lh  combined uncertainty 14 

Set II1: combined uncertainty 13 
Set l lh  0.1 bar + temp. uncert. 13 

0.181 0.148 
0.180 0.179 
0.157 0,171 

0.200 0.154 
0,161 0,132 
0.142 0.119 

0.144 0.124 
-0 .150  0,065 
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Table 15(a). Effect of inlet condition uncertainties on calculated critical flow rates; inlet 
temperatures reduced by temperature uncertainty 

131 

Ardron & Ackerman experiments 

Pressure G~Ic. G . ~  
Run (bar) (kg/m2/s) (kg/m2/s) 

1 2.21 11708.62 13262.86 
6 1.99 5091.33 7070.76 
7 1.90 3332.67 5662.61 

11 2.47 5108.54 6871.04 
16 2.07 6830.71 8998.21 
17 1.77 10266.28 10830.69 
18 1.73 10247.95 10885.78 
19 1.66 9088.47 9148.05 
20 1.59 5948.39 7729.90 
21 1.55 3975.39 6501.48 
22 1.54 4027.93 5892.32 
23 1.90 13405.14 13781.96 
24 1.91 13210.83 13582.24 
25 2.15 10659.05 11584.86 
26 3.06 7150.43 9617.42 
27 3.65 5679.38 7719.91 
28 3.60 5460.05 7779.84 
29 !.92 13285.38 13881.87 
30 2.20 10388.23 11784.58 
31 3.67 10262.67 7719.91 

Table 15(b). Effect of inlet condition uncertainties on calculated critical flow rates; inlet 
conditions altered by pressure uncertainty 

Ardron & Ackerman experiments 

Pressure G~. Gm.s. 
Run (bar) (kg/m2/s) (kg/m2/s) 

1 2.21 11625.72 13262.86 
6 2.00 5207.62 7070.76 
7 1.91 3497.83 5662.61 

11 2.48 5215.91 6871.04 
16 2.08 7041.60 8998.21 
17 1.78 10378.62 10830.69 
18 1.74 10361.31 10885.78 
19 1.67 9219.49 9148.05 
20 1.60 6149.67 7729.90 
21 1.56 4219.20 6501.48 
22 1.55 4242.76 5892.32 
23 1.91 13512.80 13781.96 
24 1.91 13316.98 13582.24 
25 2.16 10664.70 11584.86 

Table 15(c). Effect of inlet condition uncertainties on calculated critical flow rates; inlet 
conditions altered by pressure and temperature uncertainties 

Ardron & Ackerman experiments 

Pressure G~l¢. G~,,,s. 
Run (bar) (kg/m2/s) (kg/m2/s) 

I 2.21 11750.06 13262.86 
6 2.00 5459.57 7070.76 
7 1.91 3757.34 5662.61 

I1 2.44 5466.39 6871.04 
16 2.08 7041.60 8998.21 
17 1.78 10462.88 10830.69 
18 1.74 10474.73 10885.78 
19 1.67 9333.88 9148.05 
20 1.60 6310.73 7729.90 
21 1.56 ~dd.38 6501.48 
22 1.55 4488.27 5892.32 
23 1.91 1358.46 13781.96 
24 1.91 13387.68 13582.24 
25 2.16 10785.38 11584.86 
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Table 15(d). Effect of inlet condition uncertainties on calculated critical flow rates; inlet 
conditions altered by 0.1 bar and temperature uncertainty 

Ardron & Ackerman experiments 

Pressure Gear. Gmeas. 
Run (bar) (kg/m2/s) (kg/m2/s) 

6 2.09 8120.33 7070.76 
7 2.00 6954.37 5662.61 

11 2.57 8170.07 6871.04 
16 2.17 9377.86 8998.21 
17 1.87 12285.79 10830.69 
18 1.83 12297.50 10885.78 
19 1.76 11303.56 9148.05 
20 1.69 8853.15 7729.90 

In the previous sections the scatter plots for all models for these data were shown. Table 16(a)-(h) 
shows the statistical results for the analytic and fitted functions. Table 16(i) shows these indicators 
for the fitted Moody and Henry-Fauske functions according to the RETRAN02/MOD3 pro- 
cedures. Tables 17(a)-(h) and 18(a)-(h) show the statistics for the subcooled and two-phase inlet 

Table 16(a). Predictions of all the data  in table 6 using the fit to the Burnell model 

Mean SD 

Case (mm) (mm) cos 0 N-data  \ \ ~ ]  / 

1 1015 26.3 0.0 31 -0 .268  0.385 
2 152 38 0.0 5 - 5.085 1.393 
4 305 38 0.0 6 - 5.416 1.805 
5 152 51 0.0 6 - 4.784 1.603 
6 305 51 0.0 5 - 6.363 2.083 
7 406 51 0.0 6 - 6.185 2.066 
8 305 76 0.0 5 - 7.088 1.860 
9 610 76 0.0 6 -6 .873  2.187 

10 406 51 0.0 4 - 5.952 1.689 
11 533 51 0.0 6 -8 .895  4.151 
12 500 12 0.0 10 -0 .647  0.163 
13 1600 30 0.0 5 -0 .789  0.185 
14 1700 50 0.0 6 -0 .392  0.112 
18 13 44 0.0 92 -0 .118  0.058 
19 2674 14 1.0 13 - 0.087 0.104 
20 2674 14 1.0 24 - 0.305 0.204 
31 463 20 1.0 15 --0.373 0.109 
32 463 20 1.0 73 --0.392 0.179 
38 2335 20 1.0 28 -- 1.385 0.504 
39 306 13 1.0 26 - 0.515 0.220 
40 306 13 1.0 31 -0 .585  0.198 
43 45 12.7 0.0 129 - 0.076 0.157 
44 45 12.7 0.0 13 0.123 0.086 
45 57 12.7 0.0 47 - 0.046 0.116 
46 362 12.7 0.0 19 -0 .640  0.268 
47 83 12.7 0.0 17 -0 .197  0.138 
48 553 12.7 0.0 13 - 0.780 0.147 
49 108 12.7 0.0 23 -0 .343  0. I 12 
50 679 12.7 0.0 96 - 0.885 0.142 
51 159 12.7 0.0 15 -0.421 0.120 
52 1823 12.7 0.0 81 - 1.238 0.149 
53 235 12.7 0.0 12 -0 .514  0.122 
54 273 12.7 0.0 22 - 0.603 0.1 t 0 
55 5 12.7 0.0 58 -0 .067  0.125 
56 322 12.7 0.0 24 - 0.895 0.126 
57 513 12.7 0.0 24 -0 .911 0.114 
58 640 12.7 0.0 17 - 1.017 0.167 
59 195 12.7 0.0 23 - 0.657 0.120 
60 45 19 0.0 23 - 0. 220 0.107 
61 732 54 0.0 4 - 0.477 0.030 
62 696 76 0.0 3 - 0.593 0.043 
63 63 28 0.0 4 - 0.227 0.125 
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Case 

Table 16(b). Predictions of all the data in table 6 using the isenthalpic model 
Mean SD 

(mm) (mm) cos O N-data \ Gm / \ \  G m ] /  

1 1015 26.3 0.0 31 0.681 0.153 
2 152 38 0.0 5 -4.491 1.527 
4 305 38 0.0 6 -4.708 1.969 
5 152 51 0.0 6 -4.137 1.725 
6 305 51 0.0 5 -5.669 2.236 
7 406 51 0.0 6 -5.401 2.259 
8 305 76 0.0 5 -6.299 2.056 
9 610 76 0.0 6 -6.004 2.423 

10 406 51 0.0 4 -5.049 1.853 
11 533 51 0.0 6 -7.869 4.280 
12 500 12 0.0 10 -0.124 0.064 
13 1600 30 0.0 5 -0.338 0.210 
14 1700 50 0.0 6 0.011 0.069 
18 13 44 0.0 92 -0.029 0.029 
19 2674 14 1.0 13 0.755 0.036 
20 2674 14 1.0 24 0.582 0.101 
31 463 20 1.0 15 -0.111 0.038 
32 463 20 1.0 73 -0.011 0.058 
38 2335 20 1.0 28 -0.682 0.122 
39 306 13 1.0 26 -0.114 0.033 
40 306 13 1.0 31 -0.090 0.059 
43 45 12.7 0.0 129 0.358 0.116 
44 45 12.7 0.0 13 0.462 0.062 
45 57 12.7 0.0 47 0.366 0.063 
46 362 12.7 0.0 19 -0.031 0.166 
47 83 12.7 0.0 17 0.221 0.109 
48 553 12.7 0.0 13 -0.137 0.086 
49 108 12.7 0.0 23 0.155 0.074 
50 679 12.7 0.0 96 -0.285 0.184 
51 159 12.7 0.0 15 0.114 0.076 
52 1823 12.7 0.0 81 -0.558 0.233 
53 235 12.7 0.0 12 0.063 0.061 
54 273 12.7 0.0 22 0.028 0.059 
55 5 12.7 0.0 58 0.307 0.213 
56 322 12.7 0.0 24 -0.226 0.190 
57 513 12.7 0.0 24 -0.200 0.157 
58 640 12.7 0.0 17 -0.266 0.174 
59 195 12.7 0.0 23 -0.025 0.059 
60 45 19 0.0 23 0.281 0.056 
61 732 54 0.0 4 0.124 0.026 
62 696 76 0.0 3 0.046 0.035 
63 63 28 0.0 4 0.250 0.081 

cases separately. Figures 7(a)-(h) and  8(a)-(h) show the scatter plots for each model for subcooled 
and  two-phase inlet condit ions,  respectively. 

None  of  these models provide a reasonably good fit for two-phase inlet condit ions.  The 
isenthalpic model  and  its fit and  the H E M  model provide relatively centered fits for subcooled inlet 
condi t i tons  but  the spread is at least a factor of two in either way. 

6.2. The Table 11 Experiments 

These experiments comprise 712 data  points  in a horizontal  channel  with pressures from 1.5 to 
100 bar  (22-1500 psia), diameters from 1.25 to 5 cm (1/2-2 in.) and lengths from approx. 4 m m  
to 1.8 m (! /6 in . -5 .4  ft). All points  were calculated with the GSL model; for the E l i a s ~ h a m b r 6  
and Richter models, only the subset compris ing geometries 43-54 (Sozzi & Sutherland nozzles 1 
and 2) were calculated (480 data  points). 

Table 19(a)-(c) shows the statistics for all the geometries; tables 20(a)-(c) and 21(a) and (b) show 
statistics for the subcooled and  two-phase inlet port ions of these data. Figures 9(a)--(c) and 
10(a)-(c) show the scatter plots for subcooled and two-phase inlet condi t ions  for the subset 
(geometries 43-54) for all three models and figures 9(d) and 10(d) show all of  table 11 for the GSL 
model. All three models show reasonable statistics and  centering; the Richter and GSL model are 
substantial ly better than the El ias -Chambr~ model. The Richter model is somewhat  better for 
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two-phase inlet conditions [see figure 10(b)] and the GSL model is somewhat better for subcooled 
inlet conditions [see figures 9(c) and (d)]. 

6.3. The Marviken Experiments 

This subset of data (a subset of the Marviken data) consists of 145 data points. Although it would 
be most desirable to test the capabilities of the models with respect to the nozzle alone, our inability 
to locate a consistent set of nozzle inlet conditions which were not compromised by extensive 
secondary calculations has led us to use inlet conditions at the start of the discharge pipe. (See 
however the section on use of TRACPF1/MOD1 below). 

6.3.1. The analytic and fitted models 

Figure 11 (a)-(g) shows the prediction of these experimental points using all of the simple models 
(except for the isenthalpic model which was not used here). The results are consistent with those 
for the earlier sets of horizontal and vertical upflow data sets. These models do not provide the 
consistent or well-centered predictions required of a viable calculation tool. 

6.3.2. The space-dependent models 
(1) The Elias-Chambrb model. Attempts to predict the Marviken experiments using this model 

have been unsuccessful and no further use of the model was made. 

Table 16(c). Predictions of  all the data in table 6 using the fit to the isoenthalpic model 
Mean SD 

Case (mm) (mm) cos O N-data \ Gm / \ ~ G m m  ] / 

1 1015 26.3 0.0 31 0.391 0.136 
2 152 38 0.0 5 -5 .144  1.563 
4 305 38 0.0 6 - 5.329 2.180 
5 152 51 0.0 6 -4 .711 1.917 
6 305 51 0.0 5 - 6.431 2.263 
7 406 51 0.0 6 - 6.086 2.459 
8 305 76 0.0 5 - 7.156 2.064 
9 610 76 0.0 6 -6 .743  2.610 

10 406 51 0.0 4 - 5.738 2.255 
I 1 533 51 0.0 6 -8 .833  4.625 
12 500 12 0.0 10 - 4.176 0.063 
13 1600 30 0.0 5 -0 .167  0.241 
14 1700 50 0.0 6 0.088 0.073 
18 13 44 0.0 92 -0 .105  0.049 
19 2674 14 1.0 13 84.45 72.14 
20 2674 14 1.0 24 91.16 69.95 
31 463 20 1.0 15 -0 .023  0.079 
32 463 20 1.0 73 0.098 0. I 15 
38 2335 20 1.0 28 - 0.777 0.196 
39 306 13 1.0 26 - 0.177 0.199 
40 306 13 1.0 31 - 0.330 0.354 
44 45 12.7 0.0 13 0.461 0.062 
45 57 12.7 0.0 47 0.357 0.064 
46 362 12.7 0.0 19 --0.058 0.058 
47 83 12.7 0.0 17 0.227 0.1 04 
48 553 12.7 0.0 13 -0 .117  0.068 
49 108 12.7 0.0 23 0.155 0.074 
50 679 12.7 0.0 96 - 0.249 0.138 
51 159 12.7 0.0 15 0.122 0.078 
52 1823 12.7 0.0 81 -0 .520  0.221 
53 235 12.7 0.0 12 0.058 0.054 
54 273 12.7 0.0 22 0.034 0.072 
55 5 12.7 0.0 58 0.308 0.211 
56 322 12.7 0.0 24 - 0.164 0.093 
57 513 12.7 0.0 24 -0 .202  0.108 
58 640 12.7 0.0 17 -0 .256  0.108 
59 195 12.7 0.0 23 - 0.014 0.047 
60 45 19 0.0 23 0.265 0.073 
61 732 54 0.0 4 0.097 0.026 
62 696 76 0.0 3 0.014 0.035 
63 63 28 0.0 4 0.246 0.072 
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Case 

Table 16(d). Predictions of all the data in table 6 using the Moody model 
Mean SD 

(ram) (mm) cos 0 N-data \ \ ~ J  / 

1 1015 26.3 0.0 31 0.215 0.238 
2 152 38 0.0 5 -4.489 1.528 
4 305 38 0.0 6 -4.704 1.969 
5 152 51 0.0 6 -4.131 1.721 
6 305 51 0.0 5 - 5.666 2.242 
7 406 51 0.0 6 - 5.398 2.258 
8 305 76 0.0 5 - 6.297 2.058 
9 610 76 0.0 6 - 6.004 2.425 

i0 406 51 0.0 4 - 5.051 1.854 
11 533 5 ! 0.0 6 - 7.869 4.280 
12 500 12 0.0 10 -0.188 0.110 
13 1600 30 0.0 5 -0.410 0.170 
14 1700 50 0.0 6 -0.035 0.078 
18 13 44 0.0 92 - 0.029 0.029 
19 2674 14 1.0 13 0.255 0.180 
20 2674 14 1.0 24 -0.185 0.250 
31 463 20 1.0 15 -0.120 0.018 
32 463 20 1.0 73 -0.081 0.093 
38 2335 20 1.0 28 -0.657 o. 108 
39 306 13 1.0 26 - o. 128 0.035 
40 306 13 1.0 31 - 0.094 0.055 
43 45 12.7 0.0 129 0.080 0.171 
44 45 12.7 0.0 13 0.243 0.116 
45 57 12.7 0.0 47 0.089 o. 140 
46 362 12.7 0.0 19 -0.395 0.213 
47 83 12.7 0.0 17 -0.007 o. 172 
48 553 12.7 0.0 13 - 0.465 0.226 
49 108 12.7 0.0 23 -0.150 0.170 
50 679 12.7 0.0 96 -0.582 0.156 
51 159 12.7 0.0 15 -0.192 0.182 
52 1823 12.7 0.0 81 -0.874 0.202 
53 235 12.7 0.0 12 -0.300 0.193 
54 273 12.7 0.0 22 - 0.395 o. 157 
55 5 12.7 0.0 58 0.805 0.132 
56 322 12.7 0.0 24 -0.587 o. 122 
57 513 12.7 0.0 24 -0.636 o. 115 
58 640 12.7 0.0 17 - 0.707 o. 132 
59 195 12.7 0.0 23 -0.402 0.198 
60 45 19 0.0 23 -o .  107 o. 122 
61 732 54 0.0 4 -0.342 0.027 
62 696 76 0.0 3 -0.480 0.035 
63 63 28 0.0 4 - 0.046 o. 164 

(2) The complete drift flux model Attempts  to predict  the Marviken  test data  using the G S L  

model  have not  been successful. Results were obta ined which are not  only numerical ly unacceptable  

but  have demons t ra ted  non-physical  behavior  as well. This behavior  has been traced to two 

l imitat ions o f  the Chexal  & Lellouche (1986) and the Lel louche & Zo lo ta r  (1982) models  (CLZ 

model).  These l imitat ions are: 

(1) 

(2) 

The C L Z  model  exhibits non-physical  behavior  in flow quadran ts  2 and 3 when [JL[ is large. 

The critical value for JL is - 3 . 4 5  x I&p/DhpL which is very large for reactor  core 

condi t ions  ( D h ~ 0 . 0 5 f t )  but  quite small for Marv iken  discharge pipe condi t ions  

(Dh ~ 2.5 ft). 

The  C L Z  model  does not  admit  E = 0 solutions for jG-- '0 in flow quadran t  3. This means 

that  when voids first form with GG ~ 10-SGo they form with Vc ~ 0 and E ,,~ 0.7~).8; this 

sudden change f rom a cont inuous  l iquid phase with E = 0 to a nearly s tagnant  cont inuous  
vapor  phase with large E is clearly non-physical.  

The version o f  the C L Z  model  used here is that  described in Chexal  & Lellouche (1986). 
When  these results were communica ted  to them, al terat ions in the model  were made and 

the modif ied model  has been reproofed against  downflow data  (Chexal et al. 1989). While 

both problems noted above  have been resolved and the resulting critical flow rates are quite  
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reasonable at the nozzle, the onset of  vaporization with E ,~ 0 in downflow still exhibits 
the non-physical result V c ~ 0. This condition although acceptable for an onset condition 
due to boiling on a heated wall, is still unacceptable for bulk vaporization due to 
depressurization during downflow (no problem exists in upflow or countercurrent flow). 
As such the model is still not really acceptable for predicting the Marviken experiments. 

(3) The Richter model. Attempts to predict the Marviken experiments with the Richter model 
have only been partly successful. This situation is most suprising since an earlier analysis 
(Abdollahian et al. 1982) showed fair to good success using this model with the Marviken data. 
Extensive efforts by Abdollahian to determine why this dichotomy has occurred have not been 
successful. No significant errors have been found in the current version of  the Richter code but 
the version of  the code used in Abdollahian et al. (1982) has not been located. The major problem 
with the code can be understood by examining figure 12(a) and (b). Figure 12 shows that there 
is a solution (for this particular case) at the nozzle exit with a mass flow rate of about 
100,000 kg/m 2 s which is about a factor of 2 too large. Figure 12(b) shows an enlargement in the 
neighborhood of  the nozzle exit. It is clear that the model exhibits three solutions, the lowest of 
which is close to the experimental value. The origin of this non-physical result may lie in the use 
of the vapor mass equation twice, once to determine the total mass then in a truncated form to 

Case 

Table 16(e). Predictions of all the data in table 6 using the fit to the Moody model 
Mean SD 

(mm) (mm) cos 0 N-data \ Gm / \ \ - - G ~ - ]  / 

1 1015 26.3 0.0 31 0.230 0,238 
2 152 38 0.0 5 --4.882 3.191 
4 305 38 0.0 6 --4,985 3.626 
5 152 51 0.0 6 --4.010 2,396 
6 305 51 0.0 5 --6.352 4.723 
7 406 51 0.0 6 --5,810 4.383 
8 305 76 0.0 5 --6.872 4,517 
9 610 76 0.0 6 --6,494 4.940 

10 406 51 0.0 4 --4.568 2.285 
11 533 51 0.0 6 -8 .579  7.374 
12 500 12 0.0 10 --0.170 0,161 
13 1600 30 0.0 5 - 0 . 3 8 9  0.128 
14 1700 50 0.0 6 -0 .001  0.126 
18 13 44 0.0 92 --0.280 0.395 
19 2674 14 1.0 13 0.265 0.170 
20 2674 14 1.0 24 --0.175 0.239 
31 463 20 1.0 15 --0.014 0.132 
32 463 20 1.0 73 --0.014 0.165 
38 2335 20 1.0 28 --0.498 0,248 
39 306 13 1.0 26 - 0 . 0 2 4  0.128 
40 306 13 1.0 31 -0 .026  0.109 
43 45 12.7 0.0 129 0.092 0.189 
44 45 12.7 0.0 13 0.246 0,126 
45 57 12.7 0.0 47 0.093 0.157 
46 362 12.7 0.0 19 --0.383 0,246 
47 83 12.7 0.0 17 0.025 0.205 
48 553 12.7 0.0 13 --0.449 0,260 
49 108 12.7 0.0 23 --0.135 0.198 
50 679 12.7 0.0 96 --0,512 0.255 
51 159 12.7 0.0 15 - 0 . 1 9 0  0,196 
52 1823 12.7 0.0 81 -0 .761 0,304 
53 235 12.7 0.0 12 --0,301 0.206 
54 273 12.7 0.0 22 -0 ,405  0.154 
55 5 12.7 0.0 58 0.124 0,092 
56 322 12.7 0.0 24 --0,585 0.161 
57 513 12.7 0.0 24 --0,615 0.190 
58 640 12.7 0.0 17 --0.694 0.203 
59 195 12.7 0.0 23 --0.410 0.203 
60 45 19 0.0 23 -0 ,111 0.120 
61 732 54 0.0 4 --0.347 0.027 
62 696 76 0.0 3 -0 .483  0.036 
63 63 28 0.0 4 - 0 . 0 5 4  0.161 



Case 

TWO-PHASE CRITICAL FLOW 

Table 16(f). Predictions of all the data in table 6 using the Henry-Fauske model 
Mean SD 

(mm) (mm) cos0 N-data \ \  G m , ] /  

137 

1 1015 26.3 0.0 31 0.065 0.223 
2 152 38 0.0 5 - 4.453 ! .478 
4 305 38 0.0 6 -4.691 1.892 
5 152 51 0.0 6 -- 4.125 1.662 
6 305 51 0.0 5 -5.618 2.169 
7 406 51 0.0 6 - 5.384 2.176 
8 305 76 0.0 5 - 6.251 1.985 
9 610 76 0.0 6 - 5.986 2.328 

10 406 51 0.0 4 - 5.058 1.760 
11 533 51 0.0 6 -7.837 4.162 
12 500 12 0.0 10 -0.500 0.172 
13 1600 30 0.0 5 - 0.752 0.157 
14 1700 50 0.0 6 - 0.286 0.121 
18 13 44 0.0 92 -0.018 0.025 
19 2674 14 1.0 13 0.269 0.084 
20 2674 14 1.0 24 0.001 0. ! 82 
31 463 20 1.0 15 -0.282 0.131 
32 463 20 1.0 73 - 0.293 0.163 
38 2335 20 1.0 28 -0.840 0.264 
39 306 13 1.0 26 - 0.240 0.123 
40 306 13 1.0 31 -0.251 0.121 
43 45 12.7 0.0 129 - 0.095 0.189 
44 45 12.7 0.0 13 0.097 0.115 
45 57 12.7 0.0 47 - 0.086 0.151 
46 362 12.7 0.0 19 -0.735 0.191 
47 83 12.7 0.0 17 -0.207 0.200 
48 553 12.7 0.0 13 -0.800 0.261 
49 108 12.7 0.0 23 -0.377 0.185 
50 679 12.7 0.0 96 -0.888 0.232 
51 159 12.7 0.0 15 -0.457 0.192 
52 1823 12.7 0.0 81 - 1.223 0.271 
53 235 12.7 0.0 12 -0.566 0.196 
54 273 12.7 0.0 22 -0.685 0.152 
55 5 12.7 0.0 58 -0.068 0.094 
56 322 12.7 0.0 24 -0.924 0.148 
57 513 12.7 0.0 24 -0.973 0.170 
58 640 12.7 0.0 17 -- 1.080 0.204 
59 195 12.7 0.0 23 --0.714 0.199 
60 45 19 0.0 23 --0.268 O. 1 I0 
61 732 54 0.0 4 -0.557 0.045 
62 696 76 0.0 3 -0.659 0.061 
63 63 28 0.0 4 -0.265 O. 148 

determine  the bubble diameter.  F o r  some cases the lower two roots  move  to the right and only 

the highest value remains. In o ther  cases the structure shifts to the left leaving only the lower 

root .  

In any event  we are unable to determine which root  has physical meaning  when all three are 

present and choose not  to present any results at all. 

Commentary. Since all three o f  these model  produces reasonable results for upflow and 

hor izonta l  flow in small d iameter  pipes (1/2-2 in.) it is surprising that  they all fail in large diameter  

downf low situations. Perhaps it only shows that  a factor  o f  20 ext rapola t ion  in d iameter  as well 

as a factor  o f  30 in mass flow rate is jus t  too  large a j u m p  for any data-based set o f  correlat ions.  
It  is clear that  much further  work  is needed at these condit ions.  

6.3.3. R E L A P 5  M O D 2  evaluations 

N o  evaluat ions  are per formed using the R E L A P 5 / M O D 2  methodology.  As with the other  

similar models,  a full numerical  solut ion in the context  o f  the code itself should be considered. This 

was considered to be outside the scope o f  the present paper. Therefore,  no s tatements  can be made  
concerning the adequacy  o f  the model .  
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6.3.4. TRA C-PFI /MOD 1 evaluations 

The considerations raised above concerning RELAP5/MOD2 hold for TRAC as well. However, 
the TRAC manual contains a number of comparison calculations with experiment and with other 
choking models. Because of this, additional comments appear in order. 

TRAC compares its model against the HEM and Burnell model. Figure 13 reproduces the TRAC 
comparison. It is seen that the TRAC model lies about one-quarter to one-third the distance 
between the two models and closer to the Burnell model. In comparing this result against the 
comparison of the HEM and Burnell models against data (table 22), it is assumed that the statistics 
will follow this one-quarter to one-third distance relation. Table 22 shows all the subcooled cases 
with NDATA > 10. The average mean is about -0 .5  for a 50% overprediction of the mass flow 
rate compared to experiment. 

TRAC also presents several comparisons to Marviken and one to the Edwards & O'Brien (1970) 
experiment. In all cases the upstream vessel pressure predictions are 5-15% off. The mass flow rates 
are 15-30% off during the early phases of the depressurization, are quite accurate in a middle phase, 
and are significantly in error late in the blowdown (where the error in the early phase keeps the 

Table 16(g). Predictions of all the data  in table 6 using the fit to the Henry-Fauske model 

Case 

Mean SD 

(mm) (mm) cos 0 N-data  \ G ~ - /  \ \ ~ j  / 

1 1015 26,3 0.0 31 0.228 0.250 
2 152 38 0,0 5 -4 .320  1.515 
4 305 38 0.0 6 -4 .560  1.891 
5 152 51 0.0 6 - 3.925 1.537 
6 305 51 0.0 5 - 5.472 2.258 
7 406 51 0.0 6 - 5.244 2.202 
8 305 76 0.0 5 - 6.077 2.072 
9 610 76 0.0 6 -5 .844  2.389 

10 406 51 0.0 4 - 4.872 1.645 
I 1 533 51 0.0 6 -7 .633  4,186 
12 500 12 0.0 10 -- 0.485 0.158 
13 1600 30 0.0 5 -- 0. 747 0.170 
14 1700 50 0.0 6 --0.277 0.099 
18 13 44 0.0 92 0.008 0.067 
19 2674 14 1.0 13 0.285 0.151 
20 2674 14 1.0 24 - 0.091 0.181 
31 463 20 1.0 15 --0.308 0.116 
32 463 20 1.0 73 - 0.284 0.117 
38 2335 20 1.0 28 -0 .794  0.228 
39 306 13 1.0 26 - 0.241 0.093 
40 306 13 1.0 31 -0 .239  0.104 
43 45 12.7 0.0 129 - 0.064 0.186 
44 45 12.7 0.0 13 0.114 0,109 
45 57 12,7 0.0 47 -0 .063  0.141 
46 362 12.7 0,0 19 - 0.592 0.473 
47 83 12.7 0.0 17 -0 .189  0.175 
48 553 12.7 0.0 13 -0 .763  0,208 
49 108 12.7 0.0 23 -0 .353  0.160 
50 679 12.7 0.0 96 - 0.869 0.184 
51 159 12.7 0.0 15 -0 .424  0.163 
52 1823 12.7 0.0 81 - 1.206 0.209 
53 235 12.7 0,0 12 -0 .538  0.171 
54 273 12.7 0.0 22 - 0.640 0.142 
55 5 12.7 0.0 58 -0 .057  0.112 
56 322 12.7 0.0 24 -0 .900  0.130 
57 513 12.7 0.0 24 -0 .928  0.134 
58 640 12.7 0.0 17 - 1.028 0.172 
59 195 12.7 0.0 23 - 0.673 0.167 
60 45 19 0.0 23 - 0.258 0,120 
61 732 54 0.0 4 - 0,536 0.038 
62 696 76 0.0 3 - 0.664 0.052 
63 63 28 0.0 4 -- 0.245 O. 154 



TWO-PHASE CRITICAL FLOW 

Table 16(h). Predictions of all the data in table 6 using the HEM model 

139 

Case 

Mean SD 
L D ( ~ )  /(/Gin -- Gc~2X~ 

(ram) (mm) cos 0 N-data  \ \  Gm , / /  

1 1015 26.3 0.0 31 0.762 0.124 
2 152 38 0.0 5 -4 .492  1.527 
4 305 38 0.0 6 --4.702 i.966 
5 152 51 0.0 6 -4 .132  1.721 
6 305 51 0.0 5 -- 5.663 2.232 
7 406 51 0.0 6 - 5.401 2.262 
8 305 76 0.0 5 - 6.300 2.058 
9 610 76 0.0 6 -6 .005  2.424 

lO 406 51 0.0 4 - 5.050 1.850 
1 i 533 51 0.0 6 - 7.864 4.276 
12 500 12 0.0 10 -0 .053  0.057 
13 1600 30 0.0 5 -0 .144  0.279 
14 1700 50 0.0 6 0.083 0.096 
18 13 44 0.0 92 -0 .029  0.029 
19 2674 14 1.0 13 0.789 0.044 
20 2674 14 l.O 24 0.597 0.086 
31 463 20 l.O 15 --0.039 0.104 
32 463 20 l.O 73 0.076 O. 124 
38 2335 20 1.0 28 -- 0.680 O. 120 
39 306 13 1.0 26 -- O. 112 0.033 
40 306 13 l.O 31 --0.089 0.059 
43 45 12.7 0.0 129 0.363 O. 126 
44 45 12.7 0.0 13 0.467 0.068 
45 57 12.7 0.0 47 0.362 0.066 
46 362 12.7 0.0 19 -- 0.021 O. 15 l 
47 83 12.7 0.0 17 0.227 O. 117 
48 553 12.7 0.0 13 --O.110 0.088 
49 108 12.7 0.0 23 O. 160 0.086 
50 679 12.7 0.0 96 -- 0.243 O. 154 
51 159 12.7 0.0 15 O. 125 0.087 
52 1823 12.7 0.0 81 --0.524 0.230 
53 235 12.7 0.0 12 0.066 0.059 
54 273 12.7 0.0 22 0.054 0.081 
55 5 12.7 0.0 58 0.313 0.211 
56 322 12.7 0.0 24 --0.154 O.lOl 
57 513 12.7 0.0 24 - 0 . 1 9 4  0.126 
58 640 12.7 0.0 17 - 0 . 2 3 9  O.112 
59 195 12.7 0.0 23 - 894.8 2965.0 
60 45 19 0.0 23 0.278 0.072 
61 732 54 0.0 4 O.111 0.027 
62 696 76 0.0 3 0.031 0.036 
63 63 28 0.0 4 0.273 0.083 

calculation going longer than it should). The quite good comparison with the Edwards experiment 
is expected because Alamgir & Lienhard (1981) used it among others in tuning their model. 
However, it is doubtful that the model would have been tuned differently if the Edwards experiment 
had not been used. Hence, one can reasonably accept the Edwards pressure history prediction as 
valid. 

Although we have not performed any TRAC calculations, W. Yu at Brookhaven National 
Laboratory has made a set of Marviken calculations available to us. These calculations were done 
on the nozzle itself without accounting for the rest of the discharge pipe. In order to do this the 
nozzle inlet conditions had to be estimated (see the earlier discussion on nozzle inlet condition 
uncertainties). Although we restricted our Marviken studies to data taken subsequent to 5 s into 
each transient, the BNL studies are nearly all for times less than 5 s into the transients. The 
experimental runs considered were: 12, 13, 15-19, 21, 22, 25 and the statistical comparison to 
experiment is found in table 23; the mean errors run from 3 to 30% and except for tests 15 and 
19 the standard deviations are < 12%. However, figure 14 shows that TRAC nearly always 
underpredicts the data. This conclusion may, however, be more closely related to the specific 

MF 20/? Sup--J 
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Table 16(i). Predictions of all the data in table 6 using the fit to the Moody and Henry-Fauske models 
according to the RETRAN procedures 

Mean SD 
L D /Gm-Gc\ /(Gm-Gc~2\ 

Case (mm) (mm) cosO N-data \ ~ /  \ \  Gm J / 

1 1015 26.3 0.0 31 0.229 0.240 
2 152 38 0.0 5 -4.320 1.515 
4 305 38 0.0 6 -4.560 1.891 
5 152 51 0.0 6 -3.925 1.537 
6 305 51 0.0 5 -5.472 2.258 
7 406 51 0.0 6 -5.244 2.202 
8 305 76 0.0 5 -6.077 2.072 
9 610 76 0.0 6 -5.844 2.389 

10 406 51 0.0 4 -4.872 1.645 
11 533 51 0.0 6 -7.633 4.186 
12 500 12 0.0 10 -0.356 0.089 
13 1600 30 0.0 5 -0.553 0.216 
14 1700 50 0.0 6 -0.176 0.042 
18 13 44 0.0 92 0.008 0.067 
19 2674 14 1.0 13 0.265 0.170 
20 2674 14 1.0 24 -0.175 0.239 
31 463 20 1.0 15 -0.238 0.066 
32 463 20 1.0 73 -0.192 0.068 
38 2335 20 1.0 28 -0.781 0.209 
39 306 13 1.0 26 -0.225 0.073 
40 306 13 1.0 31 -0.209 0.080 
43 45 12.7 0.0 129 0.056 0.155 
44 45 12.7 0.0 13 0.218 0.092 
45 57 12.7 0.0 47 0.064 o. 111 
46 362 12.7 0.0 19 - 0.464 0.173 
47 83 12.7 0.0 17 - 0.070 o. 133 
48 553 12.7 0.0 13 -0.563 0.137 
49 108 12.7 0.0 23 -0.200 0.116 
50 679 12.7 0.0 96 -0.681 0.103 
51 159 12.7 0.0 15 -0.253 0.121 
52 1823 12.7 0.0 81 - 1.002 0.136 
53 235 12.7 0.0 12 -0.351 0.124 
54 273 12.7 0.0 22 -0.419 0.128 
55 5 12.7 0.0 58 0.045 0.139 
56 322 12.7 0.0 24 -0.663 0.073 
57 513 12.7 0.0 24 -0.702 0.070 
58 640 12.7 0.0 17 -0.780 0.095 
59 195 12.7 0.0 23 -0.459 0.125 
60 45 19 0.0 23 -0.112 0.117 
61 732 54 0.0 4 -0.347 0.027 
62 696 76 0.0 3 -0.483 0.036 
63 63 28 0.0 4 -0.075 0.136 

m e t h o d s  used  to  es tab l i sh  the  in le t  c o n d i t i o n s  t h a n  e i the r  the  m o d e l  o r  the  m e a s u r e d  cr i t ica l  f low 
rate .  

7. R E C O M M E N D E D  M O D E L S  

In  m a k i n g  r e c o m m e n d a t i o n s  fo r  the  use o f  a c r i t ica l  f low m o d e l ,  it is i m p o r t a n t  to  real ize  h o w  

these  m o d e l s  a re  i m p l e m e n t e d .  I n  p rac t i ce  n o n e  o f  the  ana ly t i c  o r  f i t ted  m o d e l s  will  be  used as  has  

been  d o n e  in this  w o r k  (i.e. t hey  will  n o t  be  used  to  so lve  the  en t i re  g e o m e t r y  a t  once) .  Ac tua l ly ,  

c o n s i d e r i n g  the  w a y  the  sys tem codes  w o r k ,  these  m o d e l s  a re  used  as exi t  b o u n d a r y  cond i t i ons ,  

c o n n e c t i n g  the  last  v o l u m e  to  the  " o u t s i d e " .  
I n  such  a s i tua t ion ,  the  n o m i n a l  set o f  e q u a t i o n s  [3, 4, 5 o r  6] a re  so lved  t h r o u g h  this  las t  v o l u m e ,  

a n d  the  cr i t ica l  f low m o d e l  p r o v i d e s  the  t e r m i n a l  j u n c t i o n  i n f o r m a t i o n  n e e d e d  to c lose  the  sys tem 
o f  e q u a t i o n s .  As  an  e x a m p l e ,  c o n s i d e r  the  H E M  m o d e l ,  [20]--[22d], in a s p a c e - d e p e n d e n t  set t ing.  
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Case 

Table 17(a). Predictions of  all the data in table 6 using the fit to the BurneU model 

' M e a n  S D  

, o /co .  ooY  
(mm) (mm) cos 0 N-data \ \ ~ / /  

1 1015 26.3 0.0 31 --0.268 0.385 
2 152 38 0.0 5 -- 5.085 1.393 
4 305 38 0.0 6 -- 5.416 1.805 
5 152 51 0.0 6 -- 4. 784 1.603 
6 305 51 0.0 5 --6.363 2.083 
7 406 51 0.0 6 -- 6.185 2.066 
8 305 76 0.0 5 -- 7.088 1.860 
9 610 76 0.0 6 --6.873 2.187 

10 406 51 0.0 4 -- 5.952 1.689 
11 533 51 0.0 6 --8.895 4.151 
12 500 12 0.0 10 --0.647 0.163 
13 1600 30 0.0 5 --0.789 0.185 
14 1700 50 0.0 6 -- 0.392 0.112 
18 13 44 0.0 92 --0.118 0.058 
19 2674 14 1.0 5 0.016 0.002 
20 2674 14 1.0 2 --0.460 0.122 
31 463 20 1.0 15 --0.373 0.109 
32 463 20 1.0 71 --0.395 0.180 
38 2335 20 1.0 28 -- 1.385 0.504 
39 306 13 1.0 26 --0.515 0.220 
40 306 13 1.0 31 -- 0.585 0.198 
43 45 12.7 0.0 30 0.074 0.081 
44 45 12.7 0.0 3 0.209 0.048 
45 57 12.7 0.0 9 0.125 0.055 
46 362 12.7 0.0 6 -- 0.610 0.148 
47 83 12.7 0.0 7 -- 0.100 0.071 
48 553 12.7 0.0 6 --0.641 0.082 
49 108 12.7 0.0 7 --0.199 0.062 
50 679 12.7 0.0 49 --0.865 0.180 
51 159 12.7 0.0 5 --0.293 0.050 
52 1823 12.7 0.0 45 -- 1.184 0.163 
53 235 12.7 0.0 3 --0.365 0.075 
54 273 12.7 0.0 4 --0.438 0.030 
55 5 12.7 0.0 17 --0.173 0.151 
56 322 12.7 0.0 10 --0.959 0.179 
57 513 12.7 0.0 6 --0.928 0.240 
58 640 12.7 0.0 5 -- 1.072 0.316 
59 195 12.7 0.0 7 --0.513 0.072 
60 45 19 0.0 i -0.072 - -  

If  the final function is labeled m + 1 and all variables are assumed to be calculated at the junctions 
with no staggered grid, [21] will be written in steady state as: 

G2=2P2.+,(H.-H.+~) 
1 - (p .  + , / p . ) 2  

where p, and H, are "known" upstream properties. But, these known values are solutions of  
the nominal equations and are functions of the constitutive relations imposed on those equations. 
In practice, the result is that the calculated critical flow may depend more on the other con- 
stitutive relations and correlations (CRC) than on the imposed critical flow model because 
each code that contains a momentum equation automatically contains a critical flow 
model. 

Thus, if one wanted to make recommendations, it would have been necessary to run each system 
code (RETRAN02, RELAP5, TRAC P/B etc.) for each model. This is clearly economically 
impossible; therefore, the recommendations are made based on the application of the model as it 
was developed. Such a recommendation may be good or bad depending on the quality of  the other 
constitutive relations in any particular systems code. 
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Table 17(b). Predictions of  all the data in table 6 using the isenthalpic model 
Mean SD 

(mm) (mm) cos0 N-data \ Gm / \ \  Gm J /  

1 1015 26.3 0.0 31 0.681 0.153 
2 152 38 0.0 5 -- 4.491 1.527 
4 305 38 0.0 6 - 4.708 1.969 
5 152 51 0.0 6 --4.137 1.725 
6 305 51 0.0 5 - 5.669 2.236 
7 406 51 0.0 6 - 5.401 2.259 
8 305 76 0.0 5 -- 6.299 2.056 
9 610 76 0.0 6 --6.004 2.423 

10 406 51 0.0 4 - 5.049 1.853 
11 533 51 0.0 6 -7 .869  4.280 
12 500 12 0.0 10 --0.124 0.064 
13 1600 30 0.0 5 - 0.338 0.185 
14 1700 50 0.0 6 0.011 0.069 
18 13 44 0.0 92 - 0.029 0.029 
19 2674 14 1.0 5 0.738 0.001 
20 2674 14 1.0 2 0.409 0.059 
31 463 20 1.0 15 --0.111 0.038 
32 463 20 1.0 71 - 0.016 0.046 
38 2335 20 1.0 28 -- 0.682 0.122 
39 306 13 1.0 26 -0 .114  0.033 
40 306 13 1.0 31 - 0.090 0.059 
43 45.5 12.7 0.0 30 0.292 0.131 
44 45 12.7 0.0 3 0.411 0.074 
45 57 12.7 0.0 9 0.356 0.094 
46 362 12.7 0.0 6 --0.181 0.046 
47 83 12.7 0.0 7 0.149 0.099 
48 553 12.7 0.0 6 --0.195 0.093 
49 108 12.7 0.0 7 --0.100 0.103 
50 679 12.7 0.0 49 -- 0.443 0.11)9 
51 159 12.7 0.0 5 0.050 0.054 
52 1823 12.7 0.0 45 --0.726 0.174 
53 235 12.7 0.0 3 0.009 0.018 
54 273 12.7 0.0 4 -- 0.030 0.017 
55 5 12.7 0.0 17 0.045 0.222 
56 322 12.7 0.0 10 --0.433 0.102 
57 513 12.7 0.0 6 - 0.455 0.089 
58 640 12.7 0.0 5 -0 .509  0.119 
59 195 12.7 0.0 7 --0.083 0.054 
60 45 19 0.0 1 0.320 
63 64 28 0.0 1 0.199 

With this disclaimer, all of the analytic and fitted models are discarded. Examination of figures 
7(a)-(i) shows that none of these models exhibit a clusteringt around the equality line within + 10% 
that would lead to a recommendation. In fact, none lead to a complete clustering within + 50%. 
This result is not altered by considering only subcooled or two-phase inlet or longer or shorter 
length experiments.:~ Examination of figures 9(a) and 10(a) (the Elias~3hambr6 model) on which 
is plotted only part of the Sozzi & Sutherland data (table 11 cases 43-54 containing 487 
experimental data points) shows a much better clustering around the equality line, and figure 9(b) 
and (c) for the Richter and GSL models (same Sozzi & Sutherland data base) show very good 
clustering with an unfortunate bias towards overpredicting critical flow rates. Finally figure 9(d) 
for the GSL model, contains the entire Table 11 database (712 experimental points); the clustering 
remains good over the entire range 5 x 103-80 x 103 kg/m 2 s. We have then two candidates for 
recommendation: the Richter model (or Dobran 1987) and the GSL model. Further validation 
efforts must be carried out before the Elias-Chambr6 model can be recommended. These 
recommendations can be refined: the Richter model is a little better for two-phase inlet conditions, 
and the GSL model is better for subcooled inlet conditions. 

tThese figures contain all the data from table 6 (704 data points). 
~;The comparison of models strictly within their proposed development ranges (Henry-Fauske for LID < 50 for instance) 

does not alter these perceptions. If the data are accepted as valid the conclusion follows that the models do not generally 
fit the physics of the real world. 
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Table 17(c). Predictions of all the data in table 6 using the fit to the isoenthalpic model 
Mean SD 

Case (mm) (mm) cos 0 N-data \ \ - - - - f f ~  ] / 

1 1015 26.3 0.0 31 0.391 0.136 
2 152 38 0.0 5 - 5.144 1.563 
4 305 38 0.0 6 - 5.329 2.180 
5 152 51 0.0 6 -4.711 1.917 
6 305 51 0.0 5 --6.431 2.263 
7 406 51 0.0 6 - 6.086 2.459 
8 305 76 0.0 5 --7.156 2.064 
9 610 76 0.0 6 --6.743 2.610 

10 406 51 0.0 4 - 5.738 2.255 
11 533 51 0.0 6 - 8.833 4.625 
12 500 12 0.0 10 --0.042 0.063 
13 1600 30 0.0 5 -0.167 0.241 
14 1700 50 0.0 6 0.088 0.073 
18 13 44 0.0 92 -0.105 0.049 
19 2674 14 1.0 5 0.769 0.009 
20 2674 14 1.0 2 0.339 0.033 
31 463 20 1.0 15 -- 0.023 0.079 
32 463 20 1.0 71 0.096 0.116 
38 2335 20 1.0 28 -0.777 0.196 
39 306 13 1.0 26 - 0.177 0.199 
40 306 13 1.0 31 -- 0.330 0.354 
43 45 12.7 0.0 30 0.350 0.180 
44 45 12.7 0.0 3 0.456 0.095 
45 57 12.7 0.0 9 0.385 0.087 
46 362 12.7 0.0 6 -- 0.115 0.043 
47 83 12.7 0.0 7 0.194 0.119 
48 553 12.7 0.0 6 -0.117 0.098 
49 108 12.7 0.0 7 0.153 0.124 
50 679 12.7 0.0 49 -- 0.342 0.131 
51 159 12.7 0.0 5 0.121 0.104 
52 1823 12.7 0.0 45 - 0.629 0.242 
53 235 12.7 0.0 3 0.069 0.029 
54 273 12.7 0.0 4 0.124 0.042 
55 5 12.7 0.0 17 0.076 0.258 
56 322 12.7 0.0 10 -0.242 0.101 
57 513 12.7 0.0 6 - 0.367 0.092 
58 640 12.7 0.0 5 -0 .394 0.099 
59 195 12.7 0.0 7 0.016 0.043 
60 45 19 0.0 1 0.464 - -  
63 64 28 0.0 1 0.245 - -  

Unfortunately the implementation of these models into a systems code will be difficult to nearly 
impossible. These are five and six equation models and could only be matched to system codes 
containing the same number of  equations. Further, unless the models are somehow converted to 
fits, they will need to be solved as a function of distance. That is, these models become the 
fundamental equation set of  the code and critical flow prediction is a natural consequence arising 
from the solution of  the equation set. Moreover, the capability of any of  these models to predict 
the Marviken data is severely limited. It is not that the models cannot be modified so as to produce 
reasonable agreement with the data. It is simply that as they were published none of  the models 
provide a decent prediction of  the Marviken experiments. 

The above calculations and interpretations leave us in a difficult situation. For upflow and 
horizontal flow through exit geometries with diameters less than about 0.05 m the experimental 
data can be consistently predicted by existing models (Richter, GSL), but we have found no 
evidence that any existing model (certainly none we have examined) can adequately predict the 
Marviken downflow data (which to our knowledge is the only large diameter critical flow data). 
This indicates to us that direct best estimate calculations of large break situations are unreliable 
and can only be interpreted through an analysis which includes an uncertainty in the critical flow 
model. We also believe that further data need to be taken in downflow at small to medium 
diameters. 
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Table 17(d). Predictions of all the data in table 6 using the Moody model 

Mean SD 

Case (mm) (mm) cos 0 N-data \ \  Gm J / 

1 1015 26.3 0.0 31 0.215 0.238 
2 152 38 0.0 5 -4.481 1.528 
4 305 38 0.0 6 -4 .704 1.969 
5 152 51 0.0 6 -4.131 1.721 
6 305 51 0.0 5 -- 5.666 2.242 
7 406 51 0.0 6 - 5.398 2.258 
8 305 76 0.0 5 - 6.297 2.058 
9 610 76 0.0 6 - 6.004 2.425 

10 406 51 0.0 4 - 5.051 1.854 
11 533 51 0.0 6 -7.861 4.280 
12 500 12 0.0 10 -0.188 0.110 
13 1600 30 0.0 5 - 0.409 0.170 
14 1700 50 0.0 6 - 0.035 0.078 
18 13 44 0.0 92 - 0.029 0.029 
19 2674 14 1.0 5 0.405 0.001 
20 2674 14 1.0 2 0.024 0.088 
31 463 20 1.0 15 --0.120 0.018 
32 463 20 1.0 71 -- 0.079 0.093 
38 2335 20 1.0 28 - 0.657 0.108 
39 306 13 1.0 26 - 0.128 0.035 
40 306 13 1.0 31 - 0.094 0.055 
43 45 12.7 0.0 30 0.262 0.097 
44 45 12.7 0.0 3 0.397 0.059 
45 57 12.7 0.0 9 0.326 0.033 
46 362 12.7 0.0 6 - 0.211 0.089 
47 83 12.7 0.0 7 0.146 0.079 
48 553 12.7 0.0 6 - 0.239 0.084 
49 108 12.7 0.0 7 0.083 0.069 
50 679 12.7 0.0 49 - 0.475 0.138 
51 159 12.7 0.0 5 0.033 0.033 
52 1823 12.7 0.0 45 - 0.744 0.167 
53 235 12.7 0.0 3 -0.008 0.061 
54 273 12.7 0.0 4 - 0 . I  14 0.018 
55 5 12.7 0.0 17 0.040 0.206 
56 322 12.7 0.0 10 -0.517 0.167 
57 513 12.7 0.0 6 -0 .480 0.139 
58 640 12.7 0.0 5 -0.578 0.192 
59 195 12.7 0.0 7 -0.131 0.098 
60 45 19 0.0 1 0.253 --- 
63 64 28 0.0 1 0.131 - -  
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Table 17(e). Predictions of all the data in table 6 using the fit to the Moody model 

Case 

Mean SD 

(mm) (mm) cos 0 N-data \~,---'-~'-m ] / 

1 1015 
2 152 
4 305 
5 152 
6 305 
7 406 
8 305 
9 610 

10 4O6 
11 533 
12 500 
13 1600 
14 1700 
18 13 
19 2674 
20 2674 
31 463 
32 463 
38 2335 
39 306 
40 306 
43 45 
44 45 
45 57 
46 362 
47 83 
48 553 
49 108 
50 679 
51 159 
52 1823 
53 235 
54 273 
55 5 
56 322 
57 513 
58 640 
59 195 
6O 45 
63 64 

26.3 0.0 31 0.230 0.238 
38 0.0 5 -4.882 3.191 
38 0.0 6 -4.985 3.626 
51 0.0 6 -4.010 2.396 
51 0.0 5 - 6.352 4.723 
51 0.0 6 -5.810 4.383 
76 0.0 5 -6.872 4.517 
76 0.0 6 - 6.494 4.940 
51 0.0 4 -4.568 2.285 
5 i 0.0 6 -- 8.579 7.374 
12 0.0 10 --0.170 O.161 
30 0.0 5 "0.389 O. 128 
50 0.0 6 --O.OO1 0.126 
44 0.0 92 -0.280 0.395 
14 1.0 5 0.407 O.OOl 
14 l.O 2 --0.057 0.094 
20 1.0 15 -0.014 0.132 
20 1.0 71 -0.010 0.165 
20 1.0 28 -0.498 0.248 
13 l.O 26 -0.024 0.128 
13 l.O 31 -0.026 0.109 
12.7 0.0 30 0.338 0.041 
12.7 0.0 3 0.427 0.028 
12.7 0.0 9 0.370 0.029 
12.7 0.0 6 -0.154 0.166 
12.7 0.0 7 0.233 0.019 
12.7 0.0 6 --0.192 O.110 
12.7 0.0 7 0.148 0.026 
12.7 0.0 49 --0.330 0.232 
12.7 0.0 5 0.056 0.043 
12.7 0.0 45 --0.531 0.197 
12.7 0.0 3 O.Ol I 0.096 
12.7 0.0 4 --0.131 0.018 
12.7 0.0 17 0.201 0.062 
12.7 0.0 lO -0.500 0.226 
12.7 0.0 6 -0.364 0.252 
12.7 0.0 5 -0.509 0.317 
12.7 0.0 7 -0.134 O.113 
19 0.0 1 0.244 - -  
28 0.0 1 O. 116 - -  
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Table 17(0. Predictions of all the data in table 6 using the Henry-Fauske model 

Case 

Mean 

(mm) (ram) cos 0 N-data 

SD 

\ W / /  
1 1015 
2 152 
4 305 
5 152 
6 305 
7 406 
8 305 
9 610 

10 406 
11 533 
12 500 
13 1600 
14 1700 
18 13 
19 2674 
20 2674 
31 463 
32 463 
38 2335 
39 306 
40 306 
43 45 
44 45 
45 57 
46 362 
47 83 
48 553 
49 108 
50 679 
51 159 
52 1823 
53 235 
54 273 
55 5 
56 322 
57 513 
58 640 
59 195 
60 45 
63 64 

26.3 0.0 31 0.065 0.223 
38 0.0 5 --4.453 1.478 
38 0.0 6 - 4.691 1.892 
51 0.0 6 -4.125 1.662 
51 0.0 5 -5.618 2.169 
51 0.0 6 -5 .384 2.176 
76 0.0 5 --6.251 1.985 
76 0.0 6 - 5.986 2.328 
51 0.0 4 --5.058 1.760 
51 0.0 6 --7.837 4.162 
12 0.0 10 --0.500 0.172 
30 0.0 5 -0 .752 0.157 
50 0.0 6 - 0.286 0.121 
44 0.0 92 --0.018 0.025 
14 1.0 5 0.350 0.002 
14 1.0 2 --0.154 0.105 
20 1.0 15 -0.282 0.131 
20 1.0 71 - 0.289 0.164 
20 1.0 28 -0 .840 0.264 
13 1.0 2 6  - 0.240 0.123 
13 1.0 31 -0.251 0.121 
12.7 0.0 30 0.138 0.052 
12.7 0.0 3 0.258 0.031 
12.7 0.0 9 0.178 0.029 
12.7 0.0 6 -0 .500 0.176 
12.7 0.0 7 -0.013 0.040 
12.7 0.0 6 -0.541 0.108 
12.7 0.0 7 -0 .114 0.032 
12.7 0.0 49 - 0.742 0.233 
12.7 0.0 5 -0.218 0.034 
12.7 0.0 45 - 1.026 0.192 
12.7 0.0 3 - 0.280 0.099 
12.7 0.0 4 -0 .414 0.021 
12.7 0.0 17 -0 .064 0.116 
12.7 0.0 I0 -0.839 0.227 
12.7 0.0 6 -0.787 0.273 
12.7 0.0 5 -0.947 0.351 
12.7 0.0 7 -0 .446 0.113 
19 0.0 1 0.065 - -  
28 0.0 1 -0.152 - -  
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Table 17(g). Predictions of all the data in table 6 using the fit to the Henry-Fauske model 

Case 

M e a n  S D  

(mm) (mm) cos O N-data \\ Gm ]/ 

1 1015 
2 152 
4 305 
5 152 
6 305 
7 406 
8 305 
9 610 

10 4O6 
11 533 
12 500 
13 1600 
14 1700 
18 13 
19 2674 
20 2674 
31 463 
32 463 
38 2335 
39 306 
4O 306 
43 44.5 
44 45 
45 57 
46 362 
47 83 
48 553 
49 108 
50 679 
51 159 
52 1823 
53 235 
54 273 
55 5 
56 322 
57 513 
58 640 
59 195 
60 45 
63 64 

26.3 0.0 31 0.228 0.250 
38 0.0 5 -4.320 1.515 
38 0.0 6 -4.560 1.891 
51 0.0 6 - 3.925 1.537 
51 0.0 5 - 5.472 2.258 
51 0.0 6 - 5.244 2.202 
76 0.0 5 -6.077 2.072 
76 0.0 6 - 5.844 2.389 
51 0.0 4 -4.872 1.645 
51 0.0 6 - 7.633 4.186 
12 0.0 10 -0.485 0.158 
30 0.0 5 - 0.747 0.170 
50 0.0 6 --0.277 0.099 
44 0.0 92 0.008 0.067 
14 1.0 5 0.412 0.003 
14 1.0 2 --0.029 0.095 
20 1.0 15 --0.308 0.116 
20 1.0 71 --0.282 0.118 
20 1.0 28 --0.794 0.228 
13 1.0 26 --0.241 0.093 
13 1.0 31 -- 0.239 0.104 
12.7 0.0 30 0.019 0.229 
12.7 0.0 3 0.248 0.036 
12.7 0.0 9 0.169 0.036 
12.7 0.0 6 -0.522 0.157 
12.7 0.0 7 -0.037 0.053 
12.7 0.0 6 -0.560 0.091 
12.7 0.0 7 -0.133 0.045 
12.7 0.0 49 -0.771 0.199 
12.7 0.0 5 -0.233 0.035 
12.7 0.0 45 - 1.069 O. 168 
12.7 0.0 3 -0.298 0.085 
12.7 0.0 4 -0.405 0.025 
12.7 0.0 17 -0.104 0.141 
12.7 0.0 lO -0.894 0.204 
12.7 0.0 6 -0.816 0.246 
12.7 0.0 5 -0.964 0.322 
12.7 0.0 7 -0.454 0.091 
19 0.0 1 0.082 - -  
28 0.0 1 -0.112 - -  
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Table 17(h). Predictions of all the data in table 6 using the HEM model 

Case 

Mean 

(mm) (mm) cos O N-data \ G= / 

SD 

((Go_%2\ 
\ G i n ) /  

1 1015 
2 152 
4 305 
5 152 
6 305 
7 406 
8 305 
9 610 

10 406 
11 533 
12 500 
13 1600 
14 1700 
18 13 
19 2674 
20 2674 
31 463 
32 463 
38 2335 
39 306 
40 306 
43 45 
44 45 
45 57 
46 362 
47 83 
48 553 
49 108 
50 679 
51 159 
52 1823 
53 235 
54 273 
55 5 
56 322 
57 513 
58 640 
59 195 
60 45 
63 64 

26,3 0.0 31 0. 762 0.124 
38 0.0 5 -4.492 1.527 
38 0.0 6 -4.702 1.966 
51 0.0 6 -4.132 1.721 
51 0.0 5 - 5.663 2,232 
51 0.0 6 - 5.401 2.262 
76 0.0 5 --6.300 2.058 
76 0.0 6 - 6.005 2.424 
51 0.0 4 -- 5.050 1.850 
51 0.0 6 -7 .864 4.276 
12 0.0 10 --0.053 0.057 
30 0.0 5 --0,144 0.279 
50 0.0 6 0.083 0.096 
44 0.0 92 - 0.029 0.029 
14 1.0 5 0.825 0.003 
14 1.0 2 0.594 0.040 
20 1,0 15 - 0.039 0.104 
20 1,0 71 - 0.074 0.125 
20 1.0 28 -- 0.680 0.120 
13 1.0 26 -0 .112 0.033 
13 1.0 31 -0 .089 0,059 
12.7 0.0 30 0.340 0.176 
12.7 0.0 3 0.455 0.120 
12.7 0.0 9 0.376 0.103 
12.7 0.0 6 --0.120 0.073 
12.7 0.0 7 --0.180 0,140 
12.7 0.0 6 --0.117 0.130 
12.7 0.0 7 0.143 0.149 
12.7 0.0 49 --0.344 0.150 
12.7 0.0 5 0.108 0.126 
12,7 0.0 45 --0.648 0.239 
12.7 0.0 3 0.065 0.066 
12.7 0.0 4 0.180 0,033 
12,7 0.0 17 0.073 0.250 
12.7 0.0 10 -0 .236 0.112 
12.7 0.0 6 -0.382 0.124 
12.7 0,0 5 -0.373 0.124 
12.7 0,0 7 0.026 0.075 
19 0 . 0  1 0 . 4 8 1  - -  
28 0.0 1 0.325 - -  
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Table 18(a). Predictions of all the two-phase inlet data in table 6 using the Burnell model 

Mean SD 

Case (mm) (mm) cos 0 N-data \ \ ~ J  / 

19 2674 14 1.0 8 -0.152 0.078 
20 2674 14 1.0 22 -0.291 0.205 
32 463 20 1.0 2 -0.267 0.532 
43 45 12.7 0.0 99 - 0.122 0.145 
44 45 12.7 0.0 l0 0.098 0.078 
45 57 12.7 0.0 38 --0.087 0.084 
46 362 12.7 0.0 13 --0.654 0.312 
47 83 12.7 0.0 10 --0.265 0.135 
48 553 12.7 0.0 7 --0.900 0.040 
49 108 i2.7 0.0 16 --0.406 0.056 
50 679 12.7 0.0 47 -0.906 0.084 
51 159 12.7 0.0 10 -0.486 0.086 
52 1823 12.7 0.0 36 - 1.306 0.095 
53 235 12.7 0.0 9 --0.563 0.090 
54 273 12.7 0.0 18 --0.640 0.084 
55 5 12.7 0.0 41 --0.022 0.080 
56 322 12.7 0.0 14 --0.849 0.025 
57 513 12.7 0.0 18 --0.905 0.024 
58 640 12.7 0.0 12 --0.994 0.048 
59 195 12.7 0.0 16 --0.721 0.070 
60 45 19 0.0 22 -- 0.234 0.088 
61 732 54 0.0 4 - 0.477 0.030 
62 696 76 0.0 3 -0.593 0.043 
63 63 28 0.0 3 - 0.249 0.143 

Table 18(b). Predictions of all the two-phase inlet data in table 6 using the isenthalpic model 

Mean SD 

Case (mm) (mm) cos0 N-data \ \  Gm ] /  

19 2674 14 1.0 8 0.766 0.043 
20 2674 14 1.0 22 0.598 0.089 
32 463 20 1.0 2 0.188 0.100 
43 45 12.7 0.0 99 0.378 0.104 
44 45 12.7 0.0 l0 0.478 0.053 
45 57 12.7 0.0 38 0.368 0.054 
46 362 12.7 0.0 13 0.038 0.154 
47 83 12.7 0.0 l0 0.271 0.088 
48 553 12.7 0.0 7 --0.088 0.035 
49 108 12.7 0.0 16 0.179 0.042 
50 679 12.7 0.0 47 - 0.120 0.051 
51 159 12.7 0.0 l0 0.146 0.066 
52 1823 12.7 0.0 36 - 1.347 0.062 
53 235 12.7 0.0 9 0.081 0.059 
54 273 12.7 0.0 18 0.04 1 0.058 
55 5 12.7 0.0 41 0.416 0.060 
56 322 12.7 0.0 14 -0.079 0.022 
57 513 12.7 0.0 18 -0.115 0.018 
58 640 12.7 0.0 12 -0.165 0.031 
59 195 12.7 0.0 16 0.521 0.042 
60 45 19 0.0 22 0.279 0.057 
61 732 54 0.0 4 0.124 0.026 
62 696 76 0.0 3 0.045 0.035 
63 63 28 0.0 3 0.267 0.090 
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Table 18(c). Predictions o f  all the two-phase inlet data  in table 6 using the fit to the isenthalpic model 

Mean SD 

Case (mm) (mm) cos 0 N-data  \ \  Gm ] / 

19 2674 14 1.0 8 136.8 28.14 
20 2674 14 1.0 22 99.42 67.10 
32 463 20 1.0 2 0. i 63 0.107 
43 45 12.7 0.0 99 0.361 0.109 
44 45 12.7 0.0 10 0.462 0.055 
45 57 12.7 0.0 38 0.350 0.056 
46 362 12.7 0.0 13 - 0.031 0.043 
47 83 12.7 0.0 I0 0.250 0.092 
48 553 12.7 0.0 7 --0.117 0.037 
49 108 12.7 0.0 16 0.155 0.044 
50 679 12.7 0.0 47 -- 0.152 0.053 
51 159 12.7 0.0 10 0.122 0.068 
52 1823 12.7 0.0 36 --0.385 0.065 
53 235 12.7 0.0 9 0.054 0.061 
54 273 12.7 0.0 18 0.013 0.060 
55 5 12.7 0.0 41 0.404 0.065 
56 322 12.7 0.0 14 --0.109 0.023 
57 513 12.7 0.0 18 - 0 . 1 4 6  0.019 
58 640 12.7 0.0 12 -0 .197  0.031 
59 195 12.7 0.0 16 0.028 0.044 
60 45 19 0.0 22 0.256 0.060 
61 732 54 0.0 4 0.097 0.026 
62 696 76 0.0 3 0.014 0.035 
63 63 28 0.0 3 0.247 0.094 

Table 18(d). Predictions of  all the two-phase inlet data  in table 6 using the Moody model 

Mean SD 

Case (mm) (mm) cos O N-data  \ Gm / \ \  Gm ] /  

19 2674 14 1.0 8 0.162 0.171 
20 2674 14 1.0 22 - 0.204 0.252 
32 463 20 1.0 2 - 0.162 0.521 
43 45 12.7 0.0 99 0.247 0.149 
44 45 12.7 0.0 I0 0.197 0.083 
45 57 12.7 0.0 38 0.327 0.085 
46 362 12.7 0.0 13 --0.479 0.200 
47 83 12.7 0.0 10 - 0 . 1 1 4  0.133 
48 553 12.7 0.0 7 - 0 . 658  0.044 
49 108 12.7 0.0 16 --0.252 0.061 
50 679 12.7 0.0 47 - 0.693 0.075 
51 159 12.7 0.0 10 --0.305 0.093 
52 1823 12.7 0.0 36 --0.104 0.097 
53 235 12.7 0.0 9 --0.398 0.088 
54 273 12.7 0.0 18 - 0.458 0.088 
55 5 12.7 0.0 41 0.097 0.084 
56 322 12.7 0.0 14 - 0.636 0.028 
57 513 12.7 0.0 18 - 0 . 6 8 9  0.023 
58 640 12.7 0.0 12 --0.761 0.036 
59 195 12.7 0.0 16 -0 .521  0.068 
60 45 19 0.0 22 -0 .123  0.095 
61 732 54 0.0 4 -0 .342  0.026 
62 696 76 0.0 3 - 0 . 4 8 0  0.035 
63 63 28 0.0 3 - 0 . 1 0 4  0.141 
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Table 18(e). Predictions of all the two-phase inlet data in table 6 using the fit to the Moody model 

Mean S D  

Case (mm) (mm) cos O N-data \\ Gm , ] /  

19 2674 14 1.0 8 O. 177 O. 162 
20 2674 14 1.0 22 -- O. 186 0.246 
32 463 20 1.0 2 - O. 169 0.048 
43 45 12.7 0.0 99 O. 178 O. 148 
44 45 12.7 0.0 I0 O. 192 0.082 
45 57 12.7 0.0 38 0.027 0.085 
46 362 12.7 0.0 13 --0.489 0.201 
47 83 12.7 0.0 lO --0.121 0.133 
48 553 12.7 0.0 7 --0.670 0.043 
49 108 12.7 0.0 16 --0.258 0.061 
50 679 12.7 0.0 47 --0.703 0.757 
51 159 12.7 0.0 10 -0.314 0.092 
52 1823 12.7 0.0 36 - 1.048 0.097 
53 235 12.7 .0.0 9 --0.405 0.087 
54 273 12.7 0.0 18 --0.466 0.088 
55 5 12.7 0.0 41 0.092 0.083 
56 322 12.7 0.0 14 -0.646 0.028 
57 513 12.7 0.0 18 - 0.699 0.022 
58 640 12.7 0.0 12 -0.771 0.037 
59 195 12.7 0.0 16 -0.530 0.067 
60 45 19 0.0 22 - O. 127 0.094 
61 732 54 0.0 4 --0.347 0.027 
62 696 76 0.0 3 --0.483 0.036 
63 63 28 0.0 3 --0.111 0.141 

Table 18(f). Predictions of all the two-phase inlet data in table 6 using the Henry-Fauske model 

Mean S D  

Case (ram) (mm) cos 0 N-data \ \ ~ / /  

19 2674 14 1.0 8 0.218 0.065 
20 2674 14 1.0 22 0.015 0.182 
32 463 20 1.0 2 -0.422 0.035 
43 45 12.7 0.0 99 -0.163 0.158 
44 45 12.7 0.0 I0 0.049 0.079 
45 57 12.7 0.0 38 -0.140 0.099 
46 362 12.7 0.0 13 - 0.843 0.042 
47 83 12.7 0.0 10 -0.342 0.142 
48 553 12.7 0.0 7 - 1.022 0.045 
49 108 12.7 0.0 16 -0.492 0.058 
50 679 12.7 0.0 47 - 1.039 0.093 
51 159 12.7 0.0 10 -0.576 0.096 
52 1823 12.7 0.0 36 -- 1.470 0.094 
53 235 12.7 0.0 9 -0.662 0.097 
54 273 12.7 0.0 18 --0.745 0.084 
55 5 12.7 0.0 41 --0.070 0.083 
56 322 12.7 0.0 14 -0.973 0.030 
57 513 12.7 0.0 18 -- 1.035 0.031 
58 640 12.7 0.0 12 - 1.135 0.063 
59 195 12.7 0.0 16 -0.831 0.067 
60 45 19 0.0 22 --0.283 0.084 
61 732 54 0.0 4 -0.557 0.045 
62 696 76 0.0 3 --0.659 0.061 
63 63 28 0.0 3 -- 0.340 O. 146 
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Table 18(g). Predictions o f  all the two-phase inlet data  in table 6 using the fit to the Henry-Fauske  model 

Mean SD 

Case (mm) (mm) cos O N-data  \ \  G m i l l  

19 2674 14 1.0 8 0.206 0.144 
20 2674 14 1.0 22 --0.096 0.187 
32 463 20 1.0 2 -- 0.360 0.051 
43 45 12.7 0.0 99 -0 .123  0.169 
44 45 12.7 0.0 10 0.074 0.088 
45 57 12.7 0.0 38 --0.118 0.092 
46 362 12.7 0.0 13 --0.625 0.567 
47 83 12.7 0.0 10 --0.295 0.148 
48 553 12.7 0.0 7 -- 0.938 0.050 
49 108 12.7 0.0 16 --0.450 0.066 
50 679 12.7 0.0 47 --0.971 0.088 
51 159 12.7 0.0 10 --0.519 0.103 
52 1823 12.7 0.0 36 -- 1.377 0.103 
53 235 12.7 0.0 9 --0.618 0.099 
54 273 12.7 0.0 18 --0.692 0.094 
55 5 12.7 0.0 41 --0.037 0.093 
56 322 12.7 0.0 14 --0.905 0.031 
57 513 12.7 0.0 18 --0.966 0.027 
58 640 12.7 0.0 12 -- !.055 0.050 
59 195 12.7 0.0 16 --0.769 0.072 
60 45 19 0.0 22 --0.274 0.096 
61 732 54 0.0 4 --0.536 0.038 
62 696 76 0.0 3 --0.664 0.052 
63 63 28 0.0 3 --0.290 0.155 

Table 18(h). Predictions of  all the two-phase inlet data  in table 6 using the HEM model 

Mean SD 

Case (mm) (mm) cos0  N-data  \ \  Gm ] /  

19 2674 14 1.0 8 0.766 0.043 
20 2674 14 1.0 22 0.597 0.089 
32 463 20 1.0 2 0. ! 67 0.113 
43 45 12.7 0.0 99 0.370 0.106 
44 45 12.7 0.0 I0 0.470 0.054 
45 57 12.7 0.0 38 0.359 0.055 
46 362 12.7 0.0 13 0.024 0.157 
47 83 12.7 0.0 10 0.260 0.090 
48 553 12.7 0.0 7 - 0.1 04 0.037 
49 108 12.7 0.0 16 0.167 0.043 
50 679 12.7 0.0 47 -0 .137  0.052 
51 159 12.7 0.0 10 0.133 0.067 
52 1823 12.7 0.0 36 - 0.368 0.063 
53 235 12.7 0.0 9 0.067 0.060 
54 273 12.7 0.0 18 0.026 0.059 
55 5 12.7 0.0 41 0.412 0.062 
56 322 12.7 0.0 14 -0 .095  0.023 
57 513 12.7 0.0 18 -0 .132  0.019 
58 640 12.7 0.0 12 -0 .183  0.032 
59 195 12.7 0.0 16 -0 .129  0.351 
60 45 19 0.0 22 0.268 0.058 
61 732 54 0.0 4 0.I 11 0.027 
62 696 76 0.0 3 0.031 0.036 
63 63 28 0.0 3 0.256 0.092 
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Figure 7. Comparison with experiments listed in table 6 for subcooled inlet conditions: (a) Burnell model; 
(b) Moody model with slip; (c) fit to the Moody model with slip; (d) isenthalpic model; (e) fit to the 
isenthalpic model; (f) Henry-Fauske model; (g) fit to the Henry-Fauske model; and (h) the HEM model. 
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Table 19(a). Predictions of the Sozzi & Sutherland data using the Elias--Chambr6 model 

157 

Case 

Mean SD 

(mm) (ram) cos 0 N-data \\ Gm ] / 

43 45 12.7 0.0 129 --0.226 0.261 
44 45 12.7 0.0 13 0.202 O. 102 
45 57 12.7 0.0 47 O.141 O.114 
46 362 12.7 0.0 19 0.009 O.161 
47 83 12.7 0.0 17 O.OlO 0.163 
48 553 12.7 0.0 13 - 0.025 O. 123 
49 108 12.7 0.0 23 -0.075 0.109 
50 679 12.7 0.0 96 - O. 125 0.068 
51 159 12.7 0.0 15 -0.164 0.059 
52 1823 12.7 0.0 81 0.023 0.064 
53 235 12.7 0.0 12 -0.131 0.064 
54 273 12.7 0.0 22 -0.149 0.056 

Table 19(b). Predictions of the Sozzi & Sutherland data using the Richter model 

Case 

Mean SD 
L D ( ~ m ~ )  /:Gin -- Gc~2~ 

(mm) (ram) cos 0 N-data \~, Gm ] / 

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

45 12.7 0.0 129 -0.198 0.123 
45 12.7 0.0 13 0.014 0.040 
57 12.7 0.0 47 --0.002 0.052 

362 12.7 0.0 19 --0.128 0.059 
83 12.7 0.0 17 -- 0.092 0.069 

553 12.7 0.0 13 --0.077 0.041 
108 12.7 0.0 23 --0.128 0.044 
679 12.7 0.0 96 - O. 107 0.073 
159 12.7 0.0 15 -0.113 0.074 

1823 12.7 0.0 81 0.026 0.076 
235 12.7 0.0 12 -0.079 0.066 
273 12.7 0.0 22 -0.101 0.037 

Case 

Table 19(c). Predictions of all the data in table 6 using the GSL model 

Mean SD 

(mm) (mm) cos 0 N-data \ \~-G-~-m ] / 

1 1015 26.3 0.0 31 0.181 0.148 
12 500 12 0.0 I0 0.003 0.045 
13 1600 30 0.0 5 - 0.089 0.179 
14 1700 50 0.0 6 0.108 0.04 1 
43 45 12.7 0.0 129 --0.232 0.220 
44 45 12.7 0.0 13 -0.126 0.126 
45 57 12.7 0.0 47 -0.211 0.162 
46 362 12.7 0.0 19 -- O. 174 0.059 
47 83 12.7 0.0 17 -0.193 0.182 
48 553 12.7 0.0 13 -0.065 0.062 
49 !08 12.7 0.0 23 -0.256 O. 146 
50 679 12.7 0.0 96 --0.107 0.066 
51 159 12.7 0.0 15 -0.199 0.125 
52 1823 12.7 0.0 81 -0.005 0.067 
53 235 12.7 0.0 12 -0.169 0.109 
54 273 12.7 0.0 22 --0.193 0.093 
55 5 12.7 0.0 58 - O. 154 0.076 
56 322 12.7 0.0 24 - O. 125 0.047 
57 513 12.7 0.0 24 - 0.069 0.045 
58 640 12.7 0.0 17 --0.072 0.059 
59 195 12.7 0.0 23 --0.082 O. 102 
60 45 19 0.0 23 - O. 107 0.093 
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Table 20(a). Predictions o f  all the subcooled Sozzi & Sutherland data using the Elias--Chambr~ model 

Mean SD 

Case (mm) (mm) cos0  N-data  \ Gm / \ \  Gm ] /  

43 45 12.7 0.0 30 0.055 0.137 
44 45 12.7 0.0 4 0.304 0.099 
45 57 12.7 0.0 9 0.297 0.071 
46 362 12.7 0.0 7 0.102 0.115 
47 83 12.7 0.0 8 0.142 0.102 
48 553 12.7 0.0 6 0.084 0.089 
49 108 12.7 0.0 7 0.041 0.110 
50 679 12.7 0.0 49 -0 .152  0.072 
51 159 12.7 0.0 5 - 0 . 1 7 4  0.043 
52 1823 12.7 0.0 45 0.023 0.080 
53 235 12.7 0.0 3 - 0.113 0.042 
54 273 12.7 0.0 4 - 0.099 0.032 

Table 20(b). Predictions of  all the subcooled Sozzi & Sutherland data  using the Richter model 

Mean SD 
Z O ( ~ m  G o ) ~ / C G m  - ac~2~ 

Case (mm) (nun) cos 0 N-data  \ \ - - G ~ m  J / 

43 45 12.7 0.0 30 --0.107 0.080 
44 45 12.7 0.0 4 0.004 0.031 
45 57 12.7 0.0 9 0.027 0.037 
46 362 12.7 0.0 7 - 0 . 1 7 0  0.080 
47 83 12.7 0.0 8 - 0 . 108  0.054 
48 553 12.7 0.0 6 - 0.061 0.046 
49 108 12.7 0.0 7 - 0.157 0.061 
50 679 12.7 0.0 49 - 0.135 0.079 
51 159 12.7 0.0 5 - 0 . 1 6 4  0.053 
52 1823 12.7 0.0 43 0.068 0.068 
53 235 12.7 0.0 3 - 0.129 0.044 
54 273 12.7 0.0 4 --0.116 0.035 

Case 

Table 20(c). Predictions of  all the subcooled data  in table 6 using the GSL model 

Mean SD 

(mm) (mm) cos 0 N-data  \ ~ /  \ \ ~ J  / 

1 1015 26.3 0.0 31 0.181 0.148 
12 500 12 0.0 10 0.003 0.045 
13 1600 30 0.0 5 - 0.089 0.179 
14 1700 50 0.0 6 0.108 0.041 
43 45 12.7 0.0 30 - 0.003 0.171 
44 45 12.7 0.0 4 0.047 0.042 
45 57 12.7 0.0 9 - 0.077 0.035 
46 362 12.7 0.0 7 -0 .123  0.062 
47 83 12.7 0.0 8 - 0 . 0 2 2  0.036 
48 553 12.7 0.0 6 --0.018 0.057 
49 108 12.7 0.0 7 - 0 . 052  0.039 
50 679 12.7 0.0 49 - 0.134 0.069 
51 159 12.7 0.0 5 - 0.057 0.034 
52 1823 12.7 0.0 45 -0 .009  0.082 
53 235 12.7 0.0 3 - 0 . 019  0.028 
54 273 12.7 0.0 4 -0 .045  0.024 
55 5 12.7 0.0 18 -0 .062  0.027 
56 322 12.7 0.0 8 - O. 126 0.076 
57 513 12.7 0.0 6 - 0.082 0.089 
58 640 12.7 0.0 5 - 0.086 0.107 
59 195 12.7 0.0 8 0.049 0.046 
60 45 19 0.0 1 0.157 0.025 
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Table 21(a). Predictions o f  the two-phase inlet Sozzi & Sutherland data using the Elias-Chambr~ model 

Mean SD 

Case (mm) (mm) cos 0 N-data  \ \ ~ G - ~ ' ~  ) / 

43 45 12.7 0.0 99 -- 0.311 0.228 
44 45 12.7 0.0 9 0.156 0.066 
45 57 12.7 0.0 38 0.104 0.087 
46 362 12.7 0.0 12 - 0.045 O. 1 64 
47 83 12.7 0.0 9 --0.107 0.106 
48 553 12.7 0.0 7 --0.119 0.035 
49 108 12.7 0.0 16 --0.126 0.058 
50 679 12.7 0.0 47 --0.098 0.052 
51 159 12.7 0.0 lO -0 .158  0.067 
52 1823 12.7 0.0 36 0.023 0.036 
53 235 12.7 0.0 9 --0.137 0.071 
54 273 12.7 0.0 18 -- O. 160 0.055 

Table 21(b). Predictions of  the two-phase inlet Sozzi & Sutherland data using the Richter model 

Mean S D  

Case (mm) (ram) cos 0 N-data  \ \  Gm ,] / 

43 45 12.7 0.0 99 --0.225 0.121 
44 45 12.7 0.0 9 0.018 0.044 
45 57 12.7 0.0 38 --0.009 0.054 
46 362 12.7 0.0 12 --0.103 0.019 
47 83 12.7 0.0 9 --0.077 0.080 
48 553 12.7 0.0 7 --0.090 0.033 
49 108 12.7 0.0 16 -- O. 115 0.027 
50 679 12.7 0.0 47 --0.078 0.052 
51 159 12.7 0.0 lO --0.087 0.071 
52 1823 12.7 0.0 36 -0 .027  0.045 
53 235 12.7 0.0 9 - 0 . 062  0.066 
54 273 12.7 0.0 18 -0 .098  0.037 

Table 22. Inferrred T R A C  means vis d vis HEM/Burnell  results 

Case N-data  Burnell HEM T R A C  inferred 

1 31 -0 .2680  +0.7610 -0 .01  
12 10 -0 .6470  -0 .0526  - 0 . 5  
18 92 - O. l 176 - 0.0288 - 0.09 
31 15 - 0.3728 - 0.0394 - 0.3 
32 71 -0 .3950  +0.0739 - 0 . 3  
38 28 - 1.385 -0 .6800  - 1.2 
39 26 -0 .5154  -O.1125 - 0 . 4  
40 31 -0 .5854  -0 .0892  - 0 . 4 6  
43 30 -0 .0741 +0.3401 - 0 . 0 3  
50 49 -0 .8696  -0 .3445  - 0 . 7 5  
52 45 -- 1.184 -0 .6477  - l.O 
55 17 -0 .1732  +0.0731 -O . I  
56 lO --0.9587 -0 .2359  - 0 . 7 7  



1 6 0  E .  E L I A S  a n d  G .  S. L E L L O U C H E  

100 

90 

80 
C~ j 

% 
~, 60 

...1 
~. 50 

< 
~ 40 

~ 30 
< 

N 20 

(a) 

++ + 
÷ 

+ 

÷÷// 
+ +  ÷ ÷ 

+ 

÷÷ ÷ ÷ 

+ it+ 

0 10 20 30 40 50 60 70 80 90 100 

CALCULATED MASS FLUX, (103 kg/m2-s) 

100 

90 

c'4' 

% 
6(3 

x 

~ 5o 

< 
N 4O 

,v 
~ 3o 

20 

(b) 

+÷ + 

+ 

+ 

0 I I I I I I I [ I 
0 10 20 30 40 50 60 70 80 90 100 

CALCULATED MASS FLUX, (103 kg/m2-s) 

98 

88 
cq '  

% 
-~ 6C 

,H 5o 

< 

m 

~ 3e rJl 
< 

(c)  I°° I (d) 
90 

+ 

I I I I I I i 1 I 
10 20 30 40 50 60 70 80 90 100 

CALCULATED MASS FLUX, (103 kg/m2-s) 

80 

t~4' 

% 
~, 613 
x 

< 
N 40 
ea 

N 3o 

N 20 

10 

0V I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

CALCULATED MASS FLUX, (103 kg/m2-s) 

Figure 9. Compar i son  o f  space-dependent  models  with experiments listed in cases 43-54 of  table 11 for 
subcooted inlet conditions: (a) Elias--Chambr~ model; (b) Richter model; (c) GSL model; and (d) GSL 

model  (all data of  table 11). 
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Figure 10. Comparison of space-dependent models with experiments listed in cases 43-54 of  table I 1 for 
two-phase inlet conditions: (a) Elias--Chambr6 model; (b) Richter model; (c) GSL model; and (d) GSL 

model (all data of  table I l). 
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Figure 11. Comparison with the Marviken data: (a) Burnell model; (b) isenthalpic model; (c) Moody 
model with slip; (d) fit to the Moody model; (e) Henry-Fauske model; (f)  fit to the Henry-Fauske model; 

and (g) HEM model. 
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Figure 12. Predicted mass flux vs nozzle length using Richter model for Marviken test 4 at 6 s: (a) choking 
location; and (b) exit plane. 
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Figure 13. Comparison of subcooled critical mass fluxes using the TRAC-PFI,  Burnell and HEM models. 

4 / / .  
+ ÷ + 

%- ÷ ÷ 

÷ s :  ÷ 

~ 6 

2 

0 i i I I I I 
2 4 6 8 10 12 1 4  

CALCULATED MASS FLUX, (103 kg/m2-s) 
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Table 23. Predictions of various Marviken tests using TRACPFI/MODI 

Test No. N-data Mean SD 

12 18 0.142 0.028 
13 15 0.113 0.065 
15 16 0.029 0.635 
16 15 0.218 0.041 
17 20 0.133 0.047 
18 15 0.135 0.027 
19 ! 6 0.120 0.204 
20 12 0.313 0.121 
21 15 0.288 0.107 
22 15 0.260 0.089 
25 21 0.242 0.114 
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